Architecture of large projects in bioinformatics
General data
Course ID: | 1000-717ADP |
Erasmus code / ISCED: |
11.954
|
Course title: | Architecture of large projects in bioinformatics |
Name in Polish: | Architektura dużych projektów bioinformatycznych |
Organizational unit: | Faculty of Mathematics, Informatics, and Mechanics |
Course groups: |
Obligatory courses for 2nd stage Bioinformatics |
Course homepage: | https://www.mimuw.edu.pl/~lukaskoz/teaching/adp/ |
ECTS credit allocation (and other scores): |
6.00
|
Language: | English |
Main fields of studies for MISMaP: | biology |
Type of course: | obligatory courses |
Prerequisites (description): | Programming in python Basic understanding of bioinformatic concepts |
Mode: | Classroom |
Short description: |
Knowledge of the structure of larger bioinformatic software projects. Students create a team project, learn how to use code version control systems and how to collaborate on code writing. They discuss history of development of some leading bioinformatics software packages, libraries and databases. Possible options for choice of software licenses are discussed. They talk about the role of open source and free software in scientific programs and their role in reproducibility of research. |
Full description: |
Data formats in bioinformatics. Popular software libraries (BioPerl, BioPython). Most important bioinformatics databases (UniProt, PDB, RefSeq, GenBank, ENA, InterPro, etc.) Software licensing for scientific purposes. Free-software licensing. Patents. Generic model Organism database (GMOD) project - assumptions, history and usage. Genome browsers, problem description and state of the solutions. High-performance computing (HPC) Version control systems (CVS, SVN, git), and online collaboration ad distribution platforms (github, sourceforge). Software testing, automated testing frameworks. Scientific workflow systems - taverna and galaxy. MyExperiment platform. Reproducible research. Literate programming idea and sweave, markdown, software documentation. Interactive scripting platforms, Rstudio, Jupyter. |
Bibliography: |
Materials on the website: https://www.mimuw.edu.pl/~lukaskoz/teaching/adp/ |
Learning outcomes: |
(in Polish) - ma wiedzę o technologiach zarządzania danymi biologicznymi (K_W01) - ma wiedzę o technologiach zarządzania oprogramowaniem bioinformatycznym (K_W02) - ma podstawową wiedzę dotyczącą uwarunkowań prawnych i etycznych związanych z działalnością naukową i dydaktyczną (K_W11) - potrafi tworzyć zaawansowane procedury analizy danych ( K_U03) - umie posługiwać się systemami do tworzenia procedur bioinformatycznych (K_U04) - potrafi w przystępny sposób opisać cel, założenia i algorytm procedury bioinformatycznej (K_U05) |
Assessment methods and assessment criteria: |
Homework for some laboratories. Team project and a presentation on a chosen subject |
Classes in period "Summer semester 2024/25" (past)
Time span: | 2025-02-17 - 2025-06-08 |
Go to timetable
MO TU WYK
LAB
W LAB
TH FR |
Type of class: |
Lab, 30 hours
Lecture, 30 hours
|
|
Coordinators: | Łukasz Kozłowski | |
Group instructors: | Łukasz Kozłowski | |
Students list: | (inaccessible to you) | |
Credit: | Examination |
Classes in period "Summer semester 2025/26" (future)
Time span: | 2026-02-16 - 2026-06-07 |
Go to timetable
MO TU W TH FR |
Type of class: |
Lab, 30 hours
Lecture, 30 hours
|
|
Coordinators: | Łukasz Kozłowski | |
Group instructors: | Łukasz Kozłowski | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
Examination
Lecture - Examination |
Copyright by University of Warsaw.