University of Warsaw - Central Authentication SystemYou are not logged in | log in
course directory - help

Spectroscopy Tutorials B

General data

Course ID: 1200-1SPEKTBC4 Erasmus code / ISCED: 13.3 / (0531) Chemistry
Course title: Spectroscopy Tutorials B Name in Polish: Spektroskopia B - ćwiczenia
Department: Faculty of Chemistry
Course groups: (in Polish) Przedmioty minimum programowego - zamienniki dla studentów 4-go semestru (S1-CH)
ECTS credit allocation (and other scores): 1.50
Language: Polish
Type of course:

obligatory courses

Prerequisites (description):

A student should have completed courses in mathematics,physics and quantum chemistry.


(in Polish) w sali

Short description:

The course is one of the basic courses in Bachelor studies in Chemistry (complementary to the lectures in Spectroscopy B). It is supposed to introduce the students to the methods of quantatitive and qualitative interpretation of the molecular spectra, analysed in terms of molecular symmetry and structure, and to analytical applications of molecular spectroscopy.

Full description:

The tutorial is geared towards educating the students in qualitative and quantitative interpretation of the spectra in terms of molecular symmetry and structure and analytical applications of molecular spectroscopy.

We will recollect (after having introduced them in the lecture) the quantitative description of the electromagnetic radiation, the relation of peak position and the energy levels of the molecule, the Boltzmann distribution, the relation of the peak intensity and the transition moment and population of the energy levels, and the Doppler effect. The relevant computational problems will be solved. During the following classes the student will be solving problems related to: a) rotational spectroscopy: interpretation of the microwave spectrum and rotational Raman spectrum of two-atomic and simple polyatomic molecules in term of molecular geometric parameters, modelling of spectral intensities in rotational spectrum; b) vibrational spectroscopy: energy levels of harmonic and anharmonic application of group theory in interpretation of vibrational spectra, prediction of the activity of a vibration in IR and Raman spectrum on the basis of group theory, quantitative interpretation of the rotational-vibrational spectra of two-atomic molecules; c) electronic spectra: selection rules in atoms and molecules, application of group theory in interpretation of electronic spectra, vibrational and rotational structure of electronic spectra, determination of dissociation energy from electronic spectra, luminescence spectra. d) electron spin resonance (ESR): resonance condition, prediction of the ESR spectra, determination of the g factor and hyperfine coupling constants from the ESR spectra; e) Nuclear magnetic resonance (NMR): energy levels of magnetic nuclei in external magnetic field, resonance condition, prediction of the form of NMR spectra, calculation of chemical shift and spin-spin coupling from the NMR spectra.



P. W. Atkins, Chemia Fizyczna, PWN, Warszawa, 2003.

P. W. Atkins, C.A. Trapp, M. P. Cady, C. Giunta Chemia Fizyczna. Zbiór zadań z rozwiązaniami, PWN, Warszawa, 2001.

Z. Kęcki, Podstawy spektroskopii molekularnej, PWN, Warszawa, 1992.

Learning outcomes:

After completing the tutorial, a student should be able:

a) to interpret a spectrum in terms of molecular properties

b) to predict the form of a spectrum on the basis of the theory of the given spectroscopic phenomenon

c) to use the spectra for quantitative and qualitative analysis

Assessment methods and assessment criteria:

Written test, positive mark from 60%. Attendance is obligatory, maximum two absences are allowed.

Practical placement:

Does not apply.

Classes in period "Summer semester 2020/21" (in progress)

Time span: 2021-02-22 - 2021-06-13
Choosen plan division:

see course schedule
Type of class: Class, 15 hours more information
Coordinators: Magdalena Pecul-Kudelska
Group instructors: Magdalena Pecul-Kudelska
Students list: (inaccessible to you)
Examination: Grading
Course descriptions are protected by copyright.
Copyright by University of Warsaw.