Historia matematyki I
Informacje ogólne
Kod przedmiotu: | 1000-00HM1-OG | Kod Erasmus / ISCED: |
11.101
![]() ![]() |
Nazwa przedmiotu: | Historia matematyki I | ||
Jednostka: | Wydział Matematyki, Informatyki i Mechaniki | ||
Grupy: |
Przedmioty ogólnouniwersyteckie na Uniwersytecie Warszawskim Przedmioty ogólnouniwersyteckie społeczne Przedmioty ogólnouniwersyteckie Wydziału Matematyki, Informatyki i Mechaniki |
||
Punkty ECTS i inne: |
3.00 ![]() ![]() |
||
Język prowadzenia: | polski | ||
Rodzaj przedmiotu: | ogólnouniwersyteckie |
||
Skrócony opis: |
Wykład przedstawia dynamicznie dzieje myśli matematycznej . Główny tok prezentacji polega na wskazaniu związków matematyki z przebiegiem historii politycznej, społecznej, rozwojem cywilizacji, kultury i całokształtu nauki. Wykład obejmuje okres od przełomu neolitycznego do chwili obecnej. W zasadzie można go słuchać ze szkolnym przygotowaniem matematycznym, ale większa wiedza w tym zakresie pozwoli pewne fakty zrozumieć głębiej. |
||
Pełny opis: |
Wykład jest w zasadzie dostępny dla wszystkich, zawiera jednak przykłady historycznie ważnych rozumowań matematycznych. Zaliczenie odbywa się poprzez elementarny test po każdym semestrze. Każdy semestr stanowi oddzielną całość. Lingwistyczne źródła do prehistorii pojęć. Koncepcje Piageta i New Math. Matematyka w metodologiach empirycznych. Babilon. Egipt. Przewrót w XVIII w. pne. Szkoła Talesa. Postulat wiedzy pewnej. Przewrót świadomościowy w VI w. pne. Pitagorejczycy. Początki dedukcji. Akademia platońska. Kryzys liczbowy. Stworzenie liczb rzeczywistych. Eudoksos i Teajtetos. "Elementy" Euklidesa i inne jego dzieła. Archimedes. Ptolemeusz, Diofantos. Historycy i epigoni. Matematyka pozaeuropejska Starożytności i Średniowiecza. Matematyka jako gra. Gerbert. Uniwersytety. Fibonacci. Rozwiązanie problemu równań st. 3 i 4. Status liczb zespolonych. Usunięcie trudności rachunkowych. Logarytmy. Kopernik i Kepler. Panteizm. Galileusz. "Rozprawa o metodzie" Kartezjusza. Akademie Nauk. Początki analizy. Newton, Leibniz, Huygens. Rodzina Bernoullich. Stan wiedzy na koniec XVII w. |
||
Literatura: |
Rozszerzone notatki do wykładu: M. Kordos, Wykłady z historii matematyki, WSiP 1994, Script 2005 Po polsku: D.J. Struik, Krótki zarys historii matematyki do końca XIX wieku, PWN 1963 Historia matematyki, pod red.A.P. Juszkiewicza, PWN 1978-1985 N. Bourbaki, Elementy historii matematyki, PWN 1980 S. Kulczycki, Z dziejów matematyki greckiej, PWN 1973 J. Mioduszewski, Ciągłość. Szkice z historii matematyki, WSiP 1996 Filozofia matematyki: antologia tekstów klasycznych, wyb. i opr. R. Murawski, Wyd. Naukowe UAM 1986 R. Murawski, Filozofia matematyki, PWN 1995 W innych językach: M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford UP 1972 M. Kline, Mathematics, The Loss of Certainty, Oxford UP 1980 M. Kline, Mathematics in Western Culture, Oxford UP, 1958 A. Dahan-Dalmedico, J. Peiffer, Routes et dedales, Etudes Vivantes 1982 F. Klein, Vorlesungen uber die Entwicklung der Mathematik im 19.Jahrhundert, Springer 1926 (seria) Matematika XX wieka, red. A.N. Kolmogorov, A.P. Yushlevich, Nauka, 1978-1990 (rosyjski) S.G. Gindikin, Rasskazy o fizikah i matematikah, Nauka 1981 (rosyjski) (wybór tekstów) Ob osnovanyah geometrii, Nauka 1988 (rosyjski) |
||
Efekty uczenia się: |
Zrozumienie procesu rozwoju pojęć i metod matematycznych |
||
Metody i kryteria oceniania: |
Końcowy sprawdzian pisemny |
Zajęcia w cyklu "Semestr zimowy 2021/22" (zakończony)
Okres: | 2021-10-01 - 2022-02-20 |
![]() |
Typ zajęć: |
Wykład, 30 godzin, 180 miejsc ![]() |
|
Koordynatorzy: | Paweł Strzelecki | |
Prowadzący grup: | Paweł Strzelecki | |
Strona przedmiotu: | https://www.mimuw.edu.pl/~pawelst/dydaktyka/historia/ | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Wykład - Zaliczenie na ocenę |
|
Skrócony opis: |
Wykład przedstawia dzieje myśli matematycznej. Główna nić prezentacji polega na wskazaniu związków matematyki z przebiegiem historii politycznej, społecznej, rozwojem cywilizacji, kultury i całokształtu nauki. Wykład obejmuje okres od przełomu neolitycznego do chwili obecnej. W zasadzie można go słuchać ze szkolnym przygotowaniem matematycznym, ale większa wiedza w tym zakresie pozwoli pewne fakty zrozumieć głębiej. Program Historii Matematyki I obejmuje czasy od prehistorii i starożytności po końcówkę XVII wieku. Późniejszymi epokami zajmiemy się podczas zajęć z Historii Matematyki II. | |
Pełny opis: |
Planowany rozkład materiału na poszczególne tygodnie jest dostępny tu: https://www.mimuw.edu.pl/~pawelst/wpisy-historia/Rozklad-na-tygodnie-zima/ | |
Literatura: |
1. Marlow Anderson, Victor Katz, Robin Wilson, Sherlock Holmes in Babylon and other tales of mathematical history, MAA, Washington 2004. 2. Isaac Asimov, Asimov on numbers, Pocket Books, New York 1981. 3. Carl B. Boyer, Uta Merzbach. A History of Mathematics. Wiley; 3rd edition. 2010. 4. Leo Corry, A brief history of numbers, Oxford University Press, Oxford 2015. 5. G. Ifrah, Historia powszechna cyfr, Seria z Wagą, Wydawnictwo W.A.B., Warszawa 2006. 6. Marek Kordos, Wykłady z historii matematyki. Wydanie III, Wydawnictwo Script, 2010. 7. Oscar Sheynin, Theory of Probability. A Historical Essay, Berlin 2017 8. John Stillwell. Mathematics and its History. Springer, Undergraduate Texts in Mathematics; 3rd edition. 2010. 9. Dirk J. Struik, Krótki zarys historii matematyki do końca XIX wieku. PWN, 1960. 10. Witold Wilkosz, Liczę i myślę. Jak powstała liczba, PZWS, Warszawa 1951. | |
Uwagi: |
Wykład prowadzony jest zdalnie, podczas telekonferencji przez Zoom we środy 16:15-18:00, w porze wykładu. Będziemy pracować trybie “Zespołowego Projektu Wykładowego” - zajęcia poprowadzi grupa osób, w której są zarówno matematycy i informatycy z UW i UJ, jak i historycy z UW oraz Instytutu Historii Nauki PAN. Nagrania z wykładów będą dostępne dla zarejestrowanych uczestników i prowadzących także na platformie Moodle Wydziału MIM. |
Zajęcia w cyklu "Semestr zimowy 2022/23" (jeszcze nie rozpoczęty)
Okres: | 2022-10-01 - 2023-01-29 |
![]() |
Typ zajęć: |
Wykład, 30 godzin, 180 miejsc ![]() |
|
Koordynatorzy: | Paweł Goldstein, Paweł Strzelecki | |
Prowadzący grup: | Paweł Strzelecki | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Wykład - Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet Warszawski.