Uniwersytet Warszawski - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Wstęp do równań różniczkowych cząstkowych

Informacje ogólne

Kod przedmiotu: 1000-135WRC Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Wstęp do równań różniczkowych cząstkowych
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Fizyka, II stopień; przedmioty z listy "Wybrane zagadnienia fizyki współczesnej"
Przedmioty fakultatywne dla studiów 1 stopnia na matematyce
Przedmioty fakultatywne na matematyce
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

fakultatywne

Skrócony opis:

Wprowadzenie do teorii liniowych równań różniczkowych cząstkowych. Wybrane elementy teorii dystrybucji i przestrzeni Sobolewa; zastosowania do zagadnień eliptycznych, parabolicznych i hiperbolicznych.

Pełny opis:

Przykłady rownań różniczkowych cząstkowych; związki z fizyką i geometrią. Równania różniczkowe cząstkowe pierwszego rzędu, informacja o metodzie charakterystyk. (1--2 wykłady)

Równanie falowe w wymiarach n=1, 2, 3. Wzory d'Alemberta, Poissona, Kirchhoffa. Istnienie i jednoznaczność rozwiązań. Zasada Huygensa. Niejednorodne równanie falowe, metoda Duhamela. Równanie przewodnictwa cieplnego. Zasada maksimum. Istnienie i jednoznaczność rozwiązań. Interpretacja probabilistyczna. Porównanie własności rozwiązań równania przewodnictwa cieplnego i równania falowego; interpretacje fizyczne. Równanie Laplace'a i Poissona. Funkcje harmoniczne: własność wartości średniej, zasada maksimum, nierówność Harnacka, ciągi funkcji harmonicznych. Funkcja Greena. Metoda Perrona i pojęcie bariery. Klasyfikacja równań rzędu drugiego. (4--6 wykładów)

Dystrybucje i przestrzenie Sobolewa: motywacje i definicje. Gęstość funkcji gładkich. Nierówność Poincarego.

Twierdzenie Sobolewa o włożeniu. Twierdzenie o śladzie. Metoda wariacyjna Ritza i słabe rozwiązania eliptycznych zagadnień brzegowych. Lemat Weyla; wzmianka o teorii regularności. (3--4 wykłady)

Funkcje i wartości własne operatora Laplace'a. (1--2 wykłady)

Twierdzenie Cauchy'ego i Kowalewskiej; przykład istotności założeń. Informacja o twierdzeniu Holmgrena. (1 wykład)

Literatura:

L.C. Evans. Równania różniczkowe cząstkowe. PWN, Warszawa 2002.

L. Bers, J. Fritz, M. Schechter. Partial differential equations. Interscience, 1964.

Efekty kształcenia:

Wiedza i umiejętności:

1. wie, co to jest równanie różniczkowe cząstkowe; rozróżnia równania eliptyczne, hiperboliczne i paraboliczne

2. umie wyprowadzić wzór d’Alemberta; zna metodę wyprowadzenia wzorów Kirchhoffa i Poissona

3. zna własności funkcji harmonicznych, w szczególności własność wartości średniej i jej konsekwencje

4. zna nierówność Harnacka i jej konsekwencje

5. w prostych przypadkach znajduje funkcję Greena

6. zna wzór na rozwiązanie równania ciepła w całej przestrzeni

7. umie wykorzystywać zasadę maksimum w dowodach jednoznaczności rozwiązań

8. korzysta z metod energetycznych

9. umie rozwiązywać wybrane równania różniczkowe cząstkowe metodą rozdzielenia zmiennych; zna podstawowe własności szeregów Fouriera

10. zna metodę Perrona

11. zna definicje i podstawowe własności przestrzeni Sobolewa

12. umie wykazać istnienie słabych rozwiązań, posługując się twierdzeniem Laxa-Milgrama

13. umie wykazać nierówność Poincarego oraz twierdzenie Sobolewa

14. na wybranych przykładach pokazuje związek istnienia rozwiązania równania różniczkowego z istnieniem minimum odpowiedniego funkcjonału

Kompetencje społeczne:

1. umie pracować w grupie, rozwiązując i omawiając problemy związane z teorią równań różniczkowych cząstkowych

2. zna rolę równań różniczkowych cząstkowych w opisie świata fizycznego

Zajęcia w cyklu "Semestr letni 2018/19" (zakończony)

Okres: 2019-02-16 - 2019-06-08
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Piotr Mucha
Prowadzący grup: Piotr Mucha, Tomasz Piasecki
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr letni 2019/20" (jeszcze nie rozpoczęty)

Okres: 2020-02-17 - 2020-06-10
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Agnieszka Świerczewska-Gwiazda
Prowadzący grup: Grzegorz Łukaszewicz, Agnieszka Świerczewska-Gwiazda
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.