Uniwersytet Warszawski - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Optymalizacja liniowa

Informacje ogólne

Kod przedmiotu: 1000-135OPL Kod Erasmus / ISCED: 11.912 / (0619) Komputeryzacja (inne)
Nazwa przedmiotu: Optymalizacja liniowa
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty fakultatywne dla studiów 1 stopnia na matematyce
Przedmioty fakultatywne na matematyce
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

fakultatywne

Skrócony opis:

Na wykładzie zostaną omówione metody sympleks ( w tym również dwufazowa i dualna), zadanie transportowe, zadania całkowitoliczbowe oraz aspekty geometryczne.

Pełny opis:

Zadanie programowania liniowego. Przykłady praktycznych modeli optymalizacji liniowej. Zadanie standardowe, zbiór dopuszczalny, rozwiązania optymalne. (1 wykład)

Podstawowe wiadomości o zbiorach wypukłych. Geometria zbioru dopuszczalnego, wielościany wypukłe. Punkty, kierunki i promienie ekstremalne, procedury ich generowania. Uwypuklenie zbioru wierzchołków

i promieni ekstremalnych. Twierdzenie Caratheodory'ego. Lemat Farkasa. (3 wykłady)

Zadanie kanoniczne, tablica sympleks, bazowe rozwiązanie dopuszczalne, dopuszczalność i optymalność tablicy. Pierwotna metoda sympleks. Różne wersje dwufazowej metody sympleks. Metoda dużego M. (3 wykłady)

Zadanie dualne. Twierdzenia o dualności. Warunki równowagi. Interpretacja ekonomiczna dualności, ceny dualne. Wrażliwość zadania. (2 wykłady)

Dualna metoda sympleks, jej ograniczenia i zastosowania. (1 wykład)

Grafy i przepływy w sieciach. (2 wykłady)

Zagadnienie transportu. (1 wykład)

Metoda podziału i ograniczeń. Zagadnienia całkowitoliczbowe. (2 wykłady)

Literatura:

M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows. John Wiley and Sons, 1990.

S. Gass, Programowanie liniowe. PWN, Warszawa 1980.

Efekty uczenia się:

Student

1. zna podstawowe pojęcia przestrzeni metrycznej Euklidesowej, przestrzeni liniowej i afinicznej;

2. zna pojęcia półprzestrzeni, wielościanu i wielościanu uogólnionego. Potrafi udowodnić, że są to podzbiory wypukłe i domknięte;

3. umie budować modele matematyczne typowych problemów optymalizacji liniowych i zapisywać je jako badanie ekstremów funkcji liniowych na wielościanach uogólnionych;

3. umie posługiwać się algorytmami metody sympleks: prostym, dwufazowym i dualnym. Wie jakie mogą być wyniki i kiedy jaki stosować;

4. zna teorię dualności: Potrafi opisywać wielościany uogólnione zarówno jako przecięcia półprzestrzeni jak i uwypuklenie punktów i prostych. Potrafi zadaniu programowania liniowego przyporządkować zadanie dualne i opisywać punkty optymalne jednego z zadań, znając rozwiązanie drugiego;

5. potrafi rozwiązywać zadania programowania liniowego w liczbach całkowitych. Zna metodę odcięć, w szczególności odcięcie Gomorego;

6. zna metodę rozgałęzień i odcięć ( B&B ). Umie stosować podziały Dakina;

7. zna kilka specyficznych algorytmów jak algorytm obliczania optymalnego przepływu w sieciach, zagadnienie transportowe czy problem przyporządkowania.

Zajęcia w cyklu "Semestr letni 2019/20" (zakończony)

Okres: 2020-02-17 - 2020-08-02
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Andrzej Nagórko
Prowadzący grup: Andrzej Nagórko
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr letni 2020/21" (jeszcze nie rozpoczęty)

Okres: 2021-02-22 - 2021-06-13
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Andrzej Nagórko
Prowadzący grup: Andrzej Nagórko
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.