Uniwersytet Warszawski - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Dynamika holomorficzna

Informacje ogólne

Kod przedmiotu: 1000-1M14DH Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Dynamika holomorficzna
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty monograficzne dla IV - V roku matematyki
Strona przedmiotu: http://www.mimuw.edu.pl/~baranski/teach/2018-19/dh.html
Punkty ECTS i inne: (brak)
zobacz reguły punktacji
Język prowadzenia: (brak danych)
Rodzaj przedmiotu:

monograficzne

Skrócony opis:

Wprowadzenie do teorii iteracji zespolonych funkcji wymiernych, całkowitych i meromorficznych. Podstawowe pojęcia i metody holomorficznych układów dynamicznych.

Pełny opis:

Na wykładzie przedstawione będą podstawowe pojęcia i metody teorii iteracji funkcji holomorficznych (wielomiany, funkcje wymierne, całkowite i meromorficzne) na płaszczyźnie zespolonej. Teoria ta, powstała w latach 1920-1930 dzięki pracom P. Fatou i G. Julii, rozwija się intensywnie od lat 1980-tych w związku z rozwojem technik komputerowych pozwalających na przedstawienie pojawiających się w niej skomplikowanych fraktalnych obiektów. Planuję przedstawić następujące zagadnienia:

1. Wstęp - przykłady dynamiki funkcji holomorficznych.

2. Lokalne zachowanie funkcji holomorficznej wokół punktu stałego - ścieki, źródła, punkty neutralne wymierne i niewymierne.

3. Zbiory Julii dla przekształceń holomorficznych - podstawowe własności.

4. Struktura zbioru Fatou. Baseny orbit przyciągających i parabolicznych, dyski Siegela, pierścienie Hermana, składowe błądzące. Twierdzenie o klasyfikacji. Twierdzenie Sullivana.

5. Punkty krytyczne a dynamika funkcji, hiperboliczne zbiory Julii.

6. Rodzina wielomianów kwadratowych - zbiór Mandelbrota, bifurkacje.

7. Metoda Newtona znajdowania zer funkcji holomorficznych.

8. Zespolona rodzina eksponencjalna. Topologiczne i geometryczne własności zbiorów Julii. Paradoks wymiaru.

9. Inne zagadnienia w zależności od zainteresowań słuchaczy.

Literatura:

A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991.

W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. Dostępne online jako preprint.

L. Carleson, T. Gamelin, Complex dynamics, Springer-Verlag, New York, 1993.

J. Milnor, Dynamics in one complex variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006. Dostępne online jako preprint.

F. Przytycki, J. Skrzypczak, Wstęp do teorii iteracji funkcji wymiernych na sferze Riemanna, preprint IM PAN 30, 1993. Wersja bez rysunków.

Efekty uczenia się:

Znajomość podstawowych pojęć i wyników teorii iteracji funkcji holomorficznych (wielomianów, funkcji wymiernych, całkowitych i meromorficznych). Znajomość technik używanych przy analizie dynamiki takich funkcji. Umiejętność samodzielnej analizy literatury naukowej dotyczącej tych zagadnień.

Metody i kryteria oceniania:

Egzamin ustny lub wygłoszenie referatu na zadany temat rozszerzający treści wykładu.

Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.