University of Warsaw - Central Authentication System
Strona główna

Mathematical analysis I.2*

General data

Course ID: 1000-112bAM2*
Erasmus code / ISCED: 11.101 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Mathematics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Mathematical analysis I.2*
Name in Polish: Analiza matematyczna I.2*
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: Obligatory courses for 1st grade JSEM
Obligatory courses for 1st grade JSIM
Obligatory courses for 1st grade Mathematics
ECTS credit allocation (and other scores): 11.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Main fields of studies for MISMaP:

mathematics
physics

Type of course:

obligatory courses

Prerequisites (description):

(in Polish) Oczekuje się dobrej znajomości zagadnień ujętych w sylabusie przedmiotu Analiza matematyczna I.1.

Full description: (in Polish)

Program taki jak w potokach I i II, ale przedstawiony w sposób bardziej pogłębiony.

Technika różniczkowania (pochodna sumy, różnicy, iloczynu, ilorazu), pochodna złożenia funkcji i pochodna funkcji odwrotnej. Twierdzenia o wartości średniej (Rolle'a, Lagrange'a i Cauchy'ego). Kryteria monotoniczności funkcji różniczkowalnych. Reguła de l'Hospitala. Ekstrema lokalne. Pochodne drugiego i wyższych rzędów, wzór Taylora z resztą w postaci Peano, Lagrange'a i Cauchy'ego. Wielomiany Taylora funkcji wykładniczej, logarytmu, sinusa, kosinusa, arkusa sinusa i arkusa tangensa. Punkty przegięcia. Warunek dostateczny na istnienie ekstremum lokalnego lub punktu przegięcia. Funkcje klasy C^k. (7-9 wykładów)

Ciąg funkcyjny i szereg funkcyjny. Zbieżność punktowa i zbieżność jednostajna ciągu i szeregu funkcyjnego. Jednostajny warunek Cauchy'ego, kryterium Weierstrassa jednostajnej zbieżności szeregu funkcyjnego. Twierdzenie o ciągłości granicy jednostajnie zbieżnego ciągu funkcji ciągłych. Różniczkowanie ciągów i szeregów funkcyjnych, twierdzenie Weierstrassa o jednostajnym przybliżaniu funkcji ciągłych wielomianami (np. wielomiany Bernsteina). (5-6 wykładów).

Szereg potęgowy, promień zbieżności i przedział zbieżności. Zbieżność jednostajna i bezwzględna szeregu potęgowego. Twierdzenie Abela o ciągłości szeregu potęgowego w końcu przedziału. Rozwinięcia funkcji elementarnych. (3-4 wykłady).

Całka nieoznaczona (funkcja pierwotna) i całka oznaczona funkcji ciągłej. Całkowanie przez podstawienie i przez części. Reszta całkowa we wzorze Taylora. Całkowanie funkcji wymiernych (ułamki proste). Sumy Riemanna, aproksymacja całki z funkcji ciągłej sumami Riemanna. Całkowalność w sensie Riemanna funkcji ciągłej. Interpretacja geometryczna. Długość wykresu funkcji jako kres górny długości łamanych wpisanych w ten wykres, wzór całkowy na długość wykresu funkcji klasy C^1. Całki z parametrem i rózniczkowanie całek z parametrem. Gamma-funkcja Eulera, wzory Wallisa i Stirlinga. Przykładowe zastosowania rachunku całkowego, np. obliczanie pól i objętości brył obrotowych, niewymierność liczby e. (9-11 wykładów wykładów).

Uwaga: układ materiału podczas semestru może podlegać drobnym modyfikacjom.

Bibliography: (in Polish)

A. Birkholc, Analiza matematyczna dla nauczycieli, PWN, Warszawa 1977

B. P. Demidowicz, Zbiór zadań z analizy matematycznej, Naukowa Książka, Lublin 1992 (tom I) i 1993 (tomy II i III).

G. M. Fichtenholz, Rachunek różniczkowy i całkowy, tom. II i III, PWN, Warszawa 1999.

K. Kuratowski, Rachunek różniczkowy i całkowy, PWN, Warszawa 1979.

W. Pusz, K. Strasburger, Zbiór zadań z analizy matematycznej, Wydział Fizyki UW, Warszawa 1982.

W. Rudin, Podstawy analizy matematycznej, PWN, Warszawa 2000.

Learning outcomes: (in Polish)

0. Potrafi uzasadnić poprawność swoich rozumowań. Operuje przykładami.

1. Zna metody obliczania pochodnych i najważniejsze twierdzenia rachunku różniczkowego funkcji jednej zmiennej rzeczywistej, w tym twierdzenie Lagrange'a o wartości średniej, wzór Taylora i regułę de l'Hospitala. Stosuje typowe narzędzia rachunku różniczkowego funkcji jednej zmiennej, m.in. wyznacza ekstrema lokalne, przedziały monotoniczności i wypukłości oraz kresy funkcji zmiennej rzeczywistej, a także rozwiązuje zadania optymalizacyjne. Posługuje się wzorem Taylora do obliczania granic.

2. Zna pojęcie zbieżności punktowej i jednostajnej ciągu i szeregu funkcyjnego, kryterium Weierstrassa zbieżności jednostajnej, twierdzenie o ciągłości granicy zbieżnego jednostajnie ciągu / szeregu funkcji ciągłych i twierdzenie o różniczkowaniu ciągów funkcyjnych. Potrafi badać zbieżność jednostajną ciągów funkcyjnych i dowodzić ciągłości lub różniczkowalności granic takich ciągów.

3. Zna pojęcie szeregu potęgowego i najważniejsze własności funkcyjne sumy takiego szeregu. Zna wzór Cauchy'ego-Hadamarda. Określa promień zbieżności szeregu potęgowego; potrafi wykorzystać twierdzenie o różniczkowalności szeregów funkcyjnych do sumowania konkretnych szeregów.

4. Zna pojęcie funkcji pierwotnej i całki nieoznaczonej; potrafi całkować przez części i przez podstawienie; orientuje się, jakie klasy funkcji są całkowalne w kwadraturach takimi metodami.

5. Zna pojęcie całki oznaczonej, definicję całki Riemanna i jej interpretację geometryczną. Zna związek całki oznaczonej z nieoznaczoną. Stosuje narzędzia rachunku całkowego w zadaniach o charakterze geometrycznym. Oblicza pole pod wykresem, długość krzywej, objętości i pola powierzchni brył obrotowych.

6. Zna pojęcie całki niewłaściwej oraz przykłady funkcji, zdefiniowanych za pomocą takich całek. Wykorzystując różne metody, bada zbieżność całek niewłaściwych.

Assessment methods and assessment criteria: (in Polish)

ocena na podstawie kolokwiów, pracy na ćwiczeniach i egzaminu.

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-19 - 2024-06-16
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 60 hours more information
Lecture, 60 hours more information
Coordinators: Marcin Bobieński
Group instructors: Marcin Bobieński, Piotr Nayar, Mikołaj Rotkiewicz
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination

Classes in period "Summer semester 2024/25" (future)

Time span: 2025-02-17 - 2025-06-08
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 60 hours more information
Lecture, 60 hours more information
Coordinators: Michał Jóźwikowski
Group instructors: Michał Jóźwikowski, Mikołaj Rotkiewicz
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)