University of Warsaw - Central Authentication System
Strona główna

Physics with Mathematics II, lecture

General data

Course ID: 1100-1BB21w
Erasmus code / ISCED: 13.201 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0533) Physics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Physics with Mathematics II, lecture
Name in Polish: Fizyka z matematyką II, wykład
Organizational unit: Faculty of Physics
Course groups:
ECTS credit allocation (and other scores): (not available) Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Prerequisites (description):

Lectures directed to students of the Faculty of Physics enrolled to the programme "Applications of Physics in Biology and Medicine: Molecular Biophysics and Molecular Design and Bioinformatics".

Mode:

Classroom

Short description:

The course is focused on presentation of basic notions and statements of classical (and in some limited extent quantum) physics (mostly electricity and magnetism, and thermodynamics and elementary statistical physics) and on mathematical tools used in solutions of practical problems encountered in these areas of physics. This is a continuation of the course started in the previous semester.

Full description:

The course is focused on presentation of basic notions and statements of classical (and in limited extent quantum) physics related to matter and its molecular nature. We will consider electric and magnetic properties of matter, properties of electromagnetic radiation and electromagnetic interactions, thermodynamic and statistical description of matter and processes occuring in material media. Simultaneously we will discuss mathematical tools used in solving practical problems encountered in these areas of physics.

Program:

1. Sequences and series of functions (criteria of convergence, differentiation and integration of function series, Taylor series).

2. Complex numbers (functions of complex variables, elementary complex analysis, Euler equation, representation of elementary functions).

3. Systems of linear equations and linear transformations, (matrices, permutations, determinants, matrix representation of linear transformation, inversion of matrices, vector space of functions, functions as vectors, change of base, Hermit matrices, eigenvalue, eigenvector, eigenfunction, tensor of moments of inertia).

4. Ordinary and partial differential equations, linear differential equations, systems of differential equations.

5. Calculus of probability (basic notions, conditional probability).

6. Electricity and magnetism (electrostatic field, Coulomb law, Gauss law, Poisson and Laplace equations, electric fields in matter, electric currents, magnetic fields, Lorentz force, Ampere law, Biot-Savart law, magnetic fields in matter, electromagnetic induction, Faraday laws, Maxwell equations).

7. Wave Motion (wave equation, free and dumped oscilations, reflection and diffraction of Waves)..

8. Electromagnetic radiation (relflection and diffraction, interferention, interactions with matter, geometric and wave optics).

9. Elements of thermodynamics and statistical physics (thermodynamic description of macroscopic matter, thermodynamic equilibrium, relaxation processes, thermodynamic potentials, statistical ensembles, partition functions and their relations to thermodynamic potentials).

Description by Jan Antosiewicz, November 2010.

Required acctivity of students:

Lectures 4 h a week = 60 h

Self studiec on the Lectures 4 h a week = 60 h

Preparation for exam: 30 h

Together 150 h

Bibliography:

1. E. Shilov, Elementary real and complex analysis, Dover Publications Inc., New York.

2. J. W. Dettman, Introduction to linear algebra and differential equations, Dover Publications Inc., New York.

3. M. Tenenbaum, H. Pollard, Ordinary differential equations, Dover Publications Inc., New York.

4. G. E. Hay, Vector and tensor analysis, Dover Publications Inc., New York.

5. D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (vol. 1-5), Wiley

6. F. Bueche, E. Hecht, Schaum's outline of college physics, Dover Publications Inc., New York.

7. A. Halpern, 3000 Solved problems in physics, Dover Publications Inc., New York.

Learning outcomes:

Knowledge:

1. basic calculus and linear algebra

2. basic electricity and magnetism

3. thermodynamic description of matter and statistical origins of thermodynamic properties of matter.

Skills:

1. Application of Taylor series and Euler equation

2. Application of linear equations in physical problems

3. Finding electric and magnetic fields from different sources

4. Analysis of thermodynamic properties of physical systems

Assessment methods and assessment criteria:

Final exam consists of solution of 3 problems in mathematics and 3 problems in physics and complection of a test composed of 10 closed questions. Admission for exam requires succesfull completion of classes accompanying the lecture.

Admission for the Lecture requires passing the first part of the Lecture presented during winter semester. The Lecture requires regular and intensiv self work of students during whole semester.

Practical placement:

none

This course is not currently offered.
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)