University of Warsaw - Central Authentication System
Strona główna

Atmosphere and ocean dynamics

General data

Course ID: 1100-4AOD
Erasmus code / ISCED: 13.2 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0533) Physics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Atmosphere and ocean dynamics
Name in Polish: Atmosphere and ocean dynamics
Organizational unit: Faculty of Physics
Course groups: (in Polish) Physics (Studies in English), 2nd cycle; specialization courses
(in Polish) Physics (Studies in English); 2nd cycle
Courses in English
Course homepage: https://www.igf.fuw.edu.pl/pl/courses/lectures/atmosphere-and-0129g/16/
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.
Language: English
Main fields of studies for MISMaP:

astronomy
computer science
environmental protection
geography
geology
mathematics
physics

Prerequisites (description):

Elementary theoretical mechanics, elementary fluid mechanics, phenomenological thermodynamics, elementary differential equations.

Short description:

Dynamics of the atmosphere and the ocean as dynamics of thin layer of fluid on rotating sphere. Similarities and differences between the atmosphere and the ocean. Primitive equations. Interpretation of geophysical flows in the atmosphere and the ocean. Filtering of equations. Geostrophic and quasi-geostrophic approximations. Waves in the atmosphere and in the ocean. Energetics of atmospheric circulations.

Full description:

1. Fluids: air, water. Constitutive equations. Structure of the atmosphere and the ocean. Similarities and differences.

2. Equations of motion in rotating coordinate frame (momentum, mass conservation, energy).

3. Atmosphere as a thin layer of fluid on a rotating sphere. Hydrostatic approximation. Potential temperature, potential density.

4. Multiscale atmospheric and oceanic flows. Filtration of equations. Geostrophic approximation.

5. Prognostic equations. Natural coordinates. Balanced flows in the atmosphere and in the ocean.

6. Shallow water equations. Incopmpressibility: Boussinesq and anelastic approximations.

7. Importance of the atmospheric boundary layer. Oceanic surface layer. Ekman layer in the atmosphere and in the ocean. Ocean -atmosphere interactions.

8. Circulation and vorticity. Potential vorticity. Cyclonic and anticyclonic circulation.

9. Quasi-geostrophic approximation. Numerical Weather Prediction. Mid-latitude circulations.

10. Waves in the atmosphere and in the ocean: acoustic, gravity, inertio-gravity, Rossby waves.

11. Hydrodynamic instabilities in the atmosphere and in the ocean. Baroclinic instability. Mesoscale circulations.

12. Global circulation. Energetics of global circulation. Heat transport in the ocean and in the atmosphere.

Bibliography:

Geoffrey K. Vallis, Atmospheric and Oceanic Fluid Dynamics

Benoit Cushman-Roisin, Introduction To Geophysical Fluid Dynamics. Physical and Numerical Aspects

J.R. Holton, An Introduction to dynamic meteorology.

M. L. Salby, Fundamentals of Atmospheric Sciences.

Learning outcomes:

Understanding basic principles of geophysical fluid dynamics and dynamic meteorology, in particular geostrophic and quasi-geostrophic approximations.

Understanding scale analysis of the equations of motion. Interpretation of atmospheric and oceanic processes in terms of geophysical fluid dynamics. basic understanding of atmospheric and oceanic waves, linearization equations of motion, stability analysis.

Assessment methods and assessment criteria:

Assessment will be based on documented abilities to solve problems (colloquies and written homework) as well as on theory understanding. Percentage of the final score:

- 50% problems solved in the course of written colloquies (the first colloquium in mid-term, the second colloquium at the end of the term, together with the written theoretical exam);

- 10% home exercises and problems;

-40% - theoretical exam (written).

The additional condition: theoretical exam threshold must be passed

Classes in period "Winter semester 2023/24" (past)

Time span: 2023-10-01 - 2024-01-28
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Szymon Malinowski
Group instructors: Stanisław Król, Szymon Malinowski
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination

Classes in period "Winter semester 2024/25" (future)

Time span: 2024-10-01 - 2025-01-26
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Szymon Malinowski
Group instructors: Szymon Malinowski
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)