University of Warsaw - Central Authentication System
Strona główna

Advanced engineering in astronomy

General data

Course ID: 1100-AEA
Erasmus code / ISCED: (unknown) / (0533) Physics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Advanced engineering in astronomy
Name in Polish: Advanced engineering in astronomy
Organizational unit: Faculty of Physics
Course groups: Astronomy (2nd level); 2nd year courses
ECTS credit allocation (and other scores): (not available) Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: English
Main fields of studies for MISMaP:

astronomy
biotechnology
chemistry
physics

Type of course:

elective monographs

Prerequisites (description):

Basic knowledge in astronomy, engineering, physics, chemistry, material science and biology

Mode:

Classroom

Short description:

The lecture is devoted to different types of instrumentation and phenomena which can be applied in space engineering

Full description:

The purpose of this monographic lecture is to provide introduction about novel techniques, methods, instruments which are used in astronomy.

Course learning objectives:

1. Introduction to space engineering;

2. Space optics and optical coatings;

3. Ground-based telescopes and observations;

4. Atmospheric turbulence challenges and adaptive optics;

5. Different types of satellites, other space instruments and observations from space;

6. Different types of Interferometric instruments;

7. Different types of Spectroscopic instruments;

8. Astrometric instruments;

9. Space Fiber optics and photonics;

10. Different types of sensors;

11. Radio astronomy instruments;

12. Chemistry in space engineering;

13. Astrobiology and its challenges;

14. Avionics and astronautics.

This lecture will be concentrated to basic concept of space and astronomical engineering and it will give brief understanding in how various instruments are formed, their working principle, challenges, not to mention various novel aspects of optics, biology, chemistry will be provided.

The lecture does not require full knowledge in these fields, however, basic understandment of various astronomical, physical, chemical and biological phenomena is needed.

Bibliography:

PIEGARI, Angela; FLORY, François (ed.). Optical thin films and coatings: From materials to applications. Woodhead Publishing, 2018.

HARDY, John W. Adaptive optics for astronomical telescopes. Oxford University Press on Demand, 1998.

DAVIES, Mark, et al. The standard handbook for aeronautical and astronautical engineers. McGraw-Hill, 2003.

GILMOUR, Iain; SEPHTON, Mark A. An introduction to astrobiology. 2004.

SHAW, Andrew M. Astrochemistry: From astronomy to astrobiology. John Wiley & Sons, 2007.

MONNIER, John D. Optical interferometry in astronomy. Reports on Progress in Physics, 2003, 66.5: 789.

Learning outcomes:

Capacity to learn about different branches of space engineering;

Capacity to describe the working principles of different instruments applied in astronomy;

Capacity to analyse, integrate knowledge to various physical, chemical, astronomical and biological phenomenon that are used in space engineering;

Capacity to design a real-based model of an objective (instrument, sensor, mission, etc.) which can be applied for special astronomical purpose.

Assessment methods and assessment criteria:

Final presentation of designed real-based model of an objective (instrument, sensor, mission, etc.).

This course is not currently offered.
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)