University of Warsaw - Central Authentication System
Strona główna

Physical Chemistry Laboratory IIB

General data

Course ID: 1200-1ZMCHF2BL4
Erasmus code / ISCED: 13.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0531) Chemistry The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Physical Chemistry Laboratory IIB
Name in Polish: Chemia fizyczna IIB - laboratorium
Organizational unit: Faculty of Chemistry
Course groups: (in Polish) Przedmioty minimum programowego - zamienniki dla studentów 4-go semestru (S1-CHAI, S1-ZMITP)
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Short description:

Laboratory experiments are related to the essential sections of the contents of the physical chemistry II lecture. The students work in two person groups under supervision of a teaching assistant. 10 (level B) or 6 (level A) experiments are to be completed by every group. The experiments are divided into two thematic sections: I – electrochemistry II – kinetics. In every section the experiments are strictly related to the scientific topic of the section. Time of a single experiment – 5 hrs.

Student learns methodology of measurements, how to use various research techniques to determine physicochemical quantities and how to describe and interpret the experimental data.

Full description:

This is a second part of Laboratory providing a practical demonstration of the topics covered by the lecture Physical Chemistry. The students determine: molar conductivities of weak and strong electrolytes, mean activity coefficient of electrolyte, thermodynamic functions of the reaction in the cell, standard potentials, parameters of Arrhenius equation, influence of the ionic strength on the chemical rate constant. The students investigate the kinetics of various chemical reaction and influence of catalyst on the reaction rate. They also study the kinetics of the electrode reactions.

Laboratory – 60 hrs.

Individual preparation to each experiment– 10 x 4 hrs. = 40 hrs.

Evaluation of the results and final report preparation - 10 x 4 hrs. = 40 hrs.

Total - ca.140 hrs.

Bibliography:

1. P.W. Atkins, Chemia Fizyczna, PWN, Warszawa, 2001

2. G.M.Barrow, Chemia Fizyczna, PWN, Warszawa 1978

3. R. Brdička, Podstawy Chemii Fizycznej, PWN, Warszawa 1970

4. Chemia Fizyczna – Ćwiczenia Laboratoryjne I, Wyd.UW, Warszawa 2002.

5. H.D. Forsterling, H. Kuhn Eksperymentalna chemia fizyczna, WNT Warszawa 1976

6. K. Pigoń, Z. Ruziewicz, Chemia Fizyczna. PWN, 2005

7. Praca zbiorowa, Chemia fizyczna, PWN, Warszawa, 1980.

8. W. Ufnalski, K. Mądry, Excel dla chemików...i nie tylko, WNT, Warszawa, 2000.

9. L. Sobczyk, A. Kisza, K. Gatner, A. Koll, Eksperymentalna chemia fizyczna, PWN, Warszawa 1982.

10. Fizyka Chemiczna, red. M. J. Janik, PWN, Warszawa 1989

11. L.Sobczyk, A.Kisza, Chemia Fizyczna dla przyrodników, PWN, Warszawa 1975

12. Skrypt Chemia Fizyczna - Ćwiczenia Laboratoryjne I, W-wa 2002, Wyd. UW

Learning outcomes:

After completing the course the student is expected to:

• formulate, explain, and use a number of concepts from the chapter: electrochemistry, chemical kinetics and colloids, i.e. the activity of ions in electrolyte solutions, ion-ion interactions, Debye-Hückel equation, electrochemical potential, half-cell reactions, Nernst's equation and electrochemical reactions , Galvanic cells, electromotive force (EMF) of the cell, conductivity of electrolyte solutions, relaxation and electrophoretic effects, and molecularity and the order of a reaction, reaction rate constant, collision theory and transition state theory.

• know how the galvanic cell works

• write equations of electrode reactions and use the Nernst’s equation

• explain the phenomenon of the activation and diffusion overvoltage

• determine the molar conductivity of a strong and weak electrolyte

• calculate thermodynamic functions for the reaction occurring in an electrochemical cell

• write the kinetic equations for the reactions of various orders, draw and interpret the relevant graphs

• be familiar with the complex reaction types: reversible, parallel, sequential enzymatic, chain.

• know the types of colloids, methods of their preparation, optical and their electrical properties.

• have skills of using experimental methods required for determination of abovementioned parameters.

Assessment methods and assessment criteria:

Level B

The students must pass an entrance test before being eligible for starting the experiment. The entrance test checks students' knowledge of: (i) the experiment fundamentals, (ii) the purpose of the experiment, (iii) methods of the measurements; and (iv) equipment to be used in the experiment. Evaluated results of the experiment must be reported to teaching assistant in a written form as a final report.

Once all the experiments in a specified thematic section have been completed, the students take midterm exam covering scientific topics of the section. All the experiments must be completed and all the final reports must be evaluated positively in order to be eligible to take the midterm exam.

To obtain the course credit the student must: (i) complete all the laboratories (12); (ii) all the final reports must be evaluated positively; (iii) the student must pass both midterm exams; and (iv) the total number of points earned for the tests , reports and the exam must be at least 26.

Points:

 entrance test – 0,5-3 points

 Final report - 0 –2 points

 Midterm exam - 0 – 20 points (minimum 10 points required for passing)

The points earned for the experiments are averaged. Maximum number of the points to be earned for each experiment: 5

Total number of points earned in both midterm exams and average number of points for the experiments will determine the final grade.

Maximum number of points to be earned in the semester: 50

Conversion between points and grades:

 points: 26,0 – 31,5 grade: 3

 31,6 – 36,5 grade: 3+

 36,6 – 41,5 grade: 4

 41,6 – 46,5 grade: 4+

 46,6 – 50 grade: 5

Practical placement:

Does not concern

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-19 - 2024-06-16
Selected timetable range:
Navigate to timetable
Type of class:
Lab, 70 hours more information
Coordinators: Iwona Paleska
Group instructors: Michał Grdeń, Dorota Nieciecka, Paweł Oracz, Magdalena Skompska
Students list: (inaccessible to you)
Examination: Grading
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)