University of Warsaw - Central Authentication System
Strona główna

Computer Simulations of Polymers and Biopolymers

General data

Course ID: 1200-2SPEC172M
Erasmus code / ISCED: 13.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0531) Chemistry The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Computer Simulations of Polymers and Biopolymers
Name in Polish: Symulacja komputerowa polimerów i biopolimerów
Organizational unit: Faculty of Chemistry
Course groups: (in Polish) Przedmioty do wyboru w semestrze 3M (S2-PRK-CHM)
(in Polish) Wykłady specjalizacyjne w semestrze 2M
ECTS credit allocation (and other scores): 3.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.
Language: Polish
Mode:

Classroom

Short description:

The usage of simulation techniques, the knowledge of polymer and proteins models

Full description:

Computer simulations: basics of statistical physics of macromolecules. Monte Carlo method and its modifications. Molecular Dynamics and Brownian Dynamics methods. Polymer models: continue models, full atom models, reduced models, lattice models. Potentials of interaction. Simulation of single chains: the Verdier-Stockmayer, DLL, CMA and pivot algorithms, flexible and stiff chains. Polymer solutions and melts. Different chain architectures. The transition coil-globule, adsorption, glass transition and crystalization. Local ordering, viscoelastic properties. Autocorrelation functions. Mechanisms of chain motion. Models of proteins: full atom models, reduced models, lattice models. Force fields. Statistical potentials. Simulation of globular proteins: native structures, trajectories of folding, all-or-none folding transition, thermodynamics of folding. The prediction of native structures: ab initio, with constraints. Simulation of many chain protein systems: associates, superhelices, receptor-ligand systems. Simple models of polypeptides (HP), DNA, RNA. The formation and stability of secondary structures

Bibliography:

1. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford 1989.

Encyclopedia of Computational Chemistry, Vol. I-V, ed. Paul von Ragué Schleyer, Chichester 1998.

2. Daan Frenkel, Berend Smit, Understanding Molecular Simulation, Academic Press, San Diego 2002.

3. Dieter W. Heermann, Podstawy symulacji komputerowych w fizyce, WNT, Warszawa 1997.

4. Simulation Methods for Polymers, ed. Michael Kotelyanskii and Doros N. Theodorou, Marcel Dekker, New York-Basel 2004.

Learning outcomes:

Student learns physicochemical basis of polymer, polypeptide and biopolymer theories, basic models and the most important calculation methods

Assessment methods and assessment criteria:

Test (passed when over 60% correct)

Practical placement:

does not concern

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-19 - 2024-06-16
Selected timetable range:
Navigate to timetable
Type of class:
Specialised lecture, 30 hours, 30 places more information
Coordinators: Andrzej Sikorski
Group instructors: Andrzej Sikorski
Students list: (inaccessible to you)
Examination: Examination
Full description:

Computer simulations: basics of statistical physics of macromolecules. Monte Carlo method and its modifications. Molecular Dynamics and Brownian Dynamics methods. Polymer models: continue models, full atom models, reduced models, lattice models. Potentials of interaction. Simulation of single chains: the Verdier-Stockmayer algorithm, flexible and stiff chains. Polymer solutions and melts. Different chain architectures. The transition coil-globule, adsorption, glass transition and crystalization. Local ordering, viscoelastic properties. Autocorrelation functions. Mechanisms of chain motion. Models of proteins: full atom models, reduced models, lattice models. Force fields. Statistical potentials. Simulation of globular proteins: native structures, trajectories of folding, all-or-none folding transition, thermodynamics of folding. The prediction of native structures: ab initio, with constraints. Simulation of many chain protein systems: associates, superhelices, receptor-ligand systems. Simple models of polypeptides (HP), DNA, RNA. The formation and stability of secondary structures

Bibliography:

1. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford 1989.

2. Encyclopedia of Computational Chemistry, Vol. I-V, ed. Paul von Ragué Schleyer, Chichester 1998.

3. Daan Frenkel, Berend Smit, Understanding Molecular Simulation, Academic Press, San Diego 2002.

4. Dieter W. Heermann, Podstawy symulacji komputerowych w fizyce, WNT, Warszawa 1997.

5. Simulation Methods for Polymers, ed. Michael Kotelyanskii and Doros N. Theodorou, Marcel Dekker, New York-Basel 2004.

Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)