University of Warsaw - Central Authentication System
Strona główna

New Materials: Preparation, Properties, and Applications

General data

Course ID: 1200-2SPEC62M
Erasmus code / ISCED: 13.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (unknown)
Course title: New Materials: Preparation, Properties, and Applications
Name in Polish: Nowe materiały: otrzymywanie, właściwości i zastosowania
Organizational unit: Faculty of Chemistry
Course groups: (in Polish) Inżynieria nanostruktur, II stopień; przedmioty do wyboru (Lista 1)
(in Polish) Przedmioty do wyboru w semestrze 3M (S2-PRK-CHM)
(in Polish) Wykłady specjalizacyjne w semestrze 2M
ECTS credit allocation (and other scores): 3.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.
Language: Polish
Type of course:

optional courses

Prerequisites (description):

Lecture is designed for the master degree students which obtained the bachelor degree in Physical Chemistry, Inorganic and Analytical Chemistry, Organic Chemistry . Lecture is divided in two parts and focused on conducting polymers and carbon nanostructures. After completing the lecture student should known about methods of formation, properties and practical application of conducting polymers and carbon nanostructures - fullerenes, nanotubes, encapsulates, graphene.

Mode:

Blended learning

Short description:

Lecture is divided in to parts. In the first part (15h) concerning conducting polymers the methods of chemical and electrochemical formation, properties and methods of their determination and practical application of conducting polymers in electronic, analytical chemistry, cells, electrocatalysis will be described. Some hours of lecture will be dedicated to the formation, properties, application of conducting polymer nanostructures. In the second part of lecture (15h) concerning carbon nanostructures the term 'nanotechnology' will be shortly presented while the main body of the lecture will cover the description (discovery, production, characterization and applications) of novel carbon nanostructures (fullerenes, nanotubes, encapsulates, graphene).

Full description:

General characteristics of polymers (conjugated) and methods for their preparation; doping and solubility of the polymer blends and composites. Molecular weight of polymers and methods of determining the mechanical properties of polymers. Conductivity and optical properties in the UV-VIS range. Characterization of conjugated polymers with physicochemical methods. Conducting polymer nanomaterials: preparation and properties. Applications of conjugated polymers.

Novel carbon nanostructures (fullerenes, nanotubes, encapsulates and graphene); Discovery and production techniques: high-temperature (laser and carbon arc), combustion synthesis, catalytic deposition (CVD), chemical funcionalization, etc. Characterization of carbon nanostructures: structure and morphology, functionalization, physical, chemical, mechanical and electronic properties. Current prototype and perspective applications of carbon nanostructures: pharmacology, medicin, materials science, photooptics, catalysis, tribology, nanoelectronics, microscopy, environmental protection, etc.

Bibliography:

1. Łużny, W., Wstęp do nauki o polimerach. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne: 1999.

2. Nicholson, J. W.; Brzeziński, J., Chemia polimerów. Wydawnictwa Naukowo-Techniczne: 1996.

3. Pielichowski, J.; Puszyński, A., Chemia polimerów. Wydaw. Naukowo-Techniczne TEZA: 2004.

4. Wallace, G. G.; Teasdale, P. R.; Spinks, G. M.; Kane-Maguire, L. A. P., Conductive Electroactive Polymers: Intelligent Polymer Systems, Third Edition. CRC Press: 2008.

5. Inzelt, G., Conducting Polymers: A New Era in Electrochemistry. Springer: 2012.

6. Przyłuski, J., Conducting polymers : Electrochemistry. Sci-Tech: Vaduz, 1991 .

7. Cosnier, S.; Karyakin, A., Electropolymerization: Concepts, Materials and Applications. Wiley: 2011.

8. Proń, A.; Rannou, P., Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science 2002, 27 (1), 135-190.

9. Chujo, Y., Conjugated Polymer Synthesis: Methods and Reactions. Wiley: 2013.

10. Osakada, K., Organometallic Reactions and Polymerization. Springer: 2014.

11. Kar, P., Doping in Conjugated Polymers. Wiley: 2013.

12. Gul, V. E., Structure and Properties of Conducting Polymer Composites. Taylor & Francis: 1996.

13. Hillenkamp, F.; Peter-Katalinic, J., MALDI MS: A Practical Guide to Instrumentation, Methods and Applications. Wiley: 2013.

14. Striegel, A.; Yau, W. W.; Kirkland, J. J.; Bly, D. D., Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography. Wiley: 2009.

15. Eftekhari, A., Nanostructured Conductive Polymers. Wiley: 2011.

16. Zerbi, G.; Siesler, H. W.; Noda, I.; Tasumi, M.; Krimm, S., Modern Polymer Spectroscopy. Wiley: 2008.

17. Sawyer, L.; Grubb, D.; Meyers, G. F., Polymer Microscopy. Springer: 2008.

18. Vancso, G. J.; Schönherr, H., Scanning Force Microscopy of Polymers. Springer: 2010.

19. Bowen, W. R.; Hilal, N., Atomic Force Microscopy in Process Engineering: An Introduction to AFM for Improved Processes and Products. Elsevier Science: 2009.

20. Meixiang Wan, Conducting Polymers with Micro or Nanometer Structure. Springer Science & Business Media: 2009.

21. Terje A. Skotheim, John Reynolds, Handbook of Conducting Polymers, 2 Volume Set. CRC Press: 2007.

22. Original reviews and research papers concerning conducting polymers – references are given during lectures.

23. A. Huczko, „Nanorurki Węglowe. Czarne Diamenty XXI wieku”, BEL Studio, Warszawa, 2004.

24. A. Huczko, M. Bystrzejewski, „Fulereny. 20 lat później”, Wyd. UW, Warszawa, 2006.

25. R.W. Kelsall i inn., „Nanotechnologie”, PWN, Warszawa, 2008.

Learning outcomes:

After completing the lecture student:

● possesses the basic knowledge in nanotechnlogy , in particular, the knowledge of the novel carbon nanostructures,

● possesses the knowledge on synthesis, properties and application of conducting polymers

● knows how to critically discuss the new trends in nanotechnology of carbon and conducting polymer materials,

● knows how to independently look for and use the literature connected with different aspects of material science.

Assessment methods and assessment criteria:

Written exam covering the entire material.

Practical placement:

not applicable

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-19 - 2024-06-16
Selected timetable range:
Navigate to timetable
Type of class:
Specialised lecture, 30 hours, 20 places more information
Coordinators: Michał Bystrzejewski, Maciej Mazur
Group instructors: Michał Bystrzejewski, Maciej Mazur
Students list: (inaccessible to you)
Examination: Examination
Notes:

Consultations:

Thursdays, 9.00 am to 10.00 am

Maciej Mazur: https://meet.google.com/kno-hzun-gzq

Michał Bystrzejewski: https://meet.google.com/mxr-oqyp-ryb

Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)