Uniwersytet Warszawski - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Algebra dla MSEM I

Informacje ogólne

Kod przedmiotu: 1000-111ADM1 Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Algebra dla MSEM I
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty obowiązkowe dla I roku JSEM
Punkty ECTS i inne: 8.50
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Pełny opis:

Wstęp do matematyki:

1. Relacje równoważności. Klasy abstrakcji, zasada abstrakcji, zbiór ilorazowy. Podział zbioru, relacja równoważności wyznaczona przez podział. Wzajemna odpowiedniość pomiędzy relacjami równoważności a podziałami.

2. Relacja porządku częściowego i liniowego, elementy maksymalne i największe. Relacje preferencji.

3. Porównywanie mocy zbiorów. Zbiory przeliczalne, nieprzeliczalne. Przeliczalność sumy i iloczynu kartezjańskiego zbiorów przeliczalnych. Nieprzeliczalność zbioru liczb rzeczywistych. Twierdzenie Cantora.

Algebra liniowa:

1. Układy równań liniowych. Rozwiązanie ogólne. Macierze. Operacje elementarne na wierszach macierzy. Postać schodkowa zredukowana. Zastosowanie do rozwiązywania układów równań.

2. Ciała. Ciało liczb zespolonych. Postać trygonometryczna liczb zespolonych. Pierwiastki wielomianów. Zasadnicze twierdzenie algebry (bez dowodu). Pierwiastki z jedynki. Ciała Z_p.

3. Przestrzenie liniowe. Podprzestrzenie. Kombinacje liniowe, przestrzenie rozpięte na układach wektorów. Układy liniowo niezależne. Twierdzenie Steinitza o wymianie. Bazy. Istnienie baz. Wymiar przestrzeni liniowej. Współrzędne wektora w bazie. Rząd macierzy. Twierdzenie Kroneckera-Capelliego. Opisywanie podprzestrzeni układami równań liniowych. Iloczyn i suma podprzestrzeni, wymiar sumy podprzestrzeni. Wewnętrzna suma prosta.

4. Przekształcenia liniowe. Działania na przekształceniach liniowych (dodawanie, mnożenie przez skalar, składanie), przestrzeń przekształceń liniowych L(V, W). Homotetie, rzuty i symetrie równoległe. Zadawanie przekształcenia przez wartości na bazie. Jądro i obraz przekształcenia. Monomorfizmy, epimorfizmy, izomorfizmy. Każda n-wymiarowa przestrzeń liniowa nad K jest izomorficzna z K^n. Wymiar przestrzeni w zależności od wymiaru jądra i obrazu przekształcenia liniowego. Macierz przekształcenia liniowego. Algebra macierzy. Macierze odwracalne.

5. Wyznaczniki. Własności wyznaczników. Obliczanie za pomocą operacji elementarnych. Rozwinięcia Laplace'a. Twierdzenie Cauchy'ego o mnożeniu wyznaczników. Zastosowania wyznaczników, związki z rzędem i z odwracalnością macierzy. Wzory Cramera na rozwiązanie układu n równań liniowych z n niewiadomymi.

Zajęcia w cyklu "Semestr zimowy 2018/19" (zakończony)

Okres: 2018-10-01 - 2019-01-25
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 60 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Mariusz Skałba
Prowadzący grup: Marcin Chałupnik, Mariusz Skałba
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr zimowy 2019/20" (jeszcze nie rozpoczęty)

Okres: 2019-10-01 - 2020-01-27
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 60 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Andrzej Strojnowski
Prowadzący grup: Michał Korch, Andrzej Strojnowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.