Uniwersytet Warszawski - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Wstęp do matematyki (potok I)

Informacje ogólne

Kod przedmiotu: 1000-111bWMAa Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Wstęp do matematyki (potok I)
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty obowiązkowe dla I roku matematyki
Punkty ECTS i inne: 5.50
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Podstawowe pojęcia i metody teorii mnogości (wraz z niezbędnymi elementami logiki), stanowiące język matematyki współczesnej.

Pełny opis:

1. Elementy rachunku zdań: spójniki logiczne, formuły, wartościowanie. Tautologie, zastosowanie do dowodów. Kwantyfikatory. Prawa de Morgana, negacja zdań.

2. Zbiór i relacja należenia. Sposoby definiowania zbiorów, zbiór pusty. Zawieranie zbiorów. Suma i iloczyn (przecięcie) dwóch zbiorów, własności. Suma i iloczyn (przecięcie) rodziny zbiorów. Różnica, dopełnienie zbioru. Prawa de Morgana. Pary uporządkowane, iloczyn kartezjański. Zbiór potęgowy.

3. Funkcja jako zbiór par uporządkowanych. Dziedzina, zbiór wartości, wykres. Funkcje różnowartościowe, funkcje na. Permutacje. Składanie funkcji, funkcja odwrotna. Obrazy i przeciwobrazy.

4. Indeksowane rodziny zbiorów, ich sumy, iloczyny. Podwójnie indeksowane rodziny zbiorów. Związek rachunku zdań i kwantyfikatorów z rachunkiem zbiorów. Iloczyn kartezjański (produkt) indeksowanej rodziny zbiorów.

5. Ciągi skończone i nieskończone. Twierdzenie o definiowaniu przez indukcję.

6. Równoliczność zbiorów. Zbiory skończone, przeliczalne, co najwyżej przeliczalne, nieprzeliczalne. Dowód istnienia zbiorów nieprzeliczalnych - przykłady rozumowań przekątniowych. Porównywanie mocy zbiorów, twierdzenie Cantora-Bernsteina. Przykłady zbiorów przeliczalnych, Własności (suma, iloczyn kartezjański zbiorów co najwyżej przeliczalnych). Nieprzeliczalność zbioru liczb rzeczywistych. Zbiory mocy continuum, przykłady, własności (suma, iloczyn kartezjański zbiorów mocy continuum). Wzmianka o hipotezie continuum. Twierdzenie Cantora.

7. Relacja dwuargumentowa jako zbiór par uporządkowanych, przykłady relacji. Dziedzina, przeciwdziedzina, pole relacji, relacja odwrotna. Funkcje jako relacje. Własności relacji. Relacja porządku częściowego i liniowego, diagramy Hassego relacji porządku, elementy wyróżnione. Izomorfizm zbiorów uporządkowanych, niezmienniki izomorfizmu. Lemat Kuratowskiego-Zorna (bez dowodu), twierdzenie o istnieniu bazy w dowolnej przestrzeni liniowej.

8. Relacje równoważności. Klasy abstrakcji, zasada abstrakcji, zbiór ilorazowy. Podział zbioru, relacja równoważności wyznaczona przez podział, przykłady. Wzajemna odpowiedniość pomiędzy relacjami równoważności a podziałami.

9. Liczby naturalne, aksjomaty Peano, informacja o definicjach działań i porządku. Wzmianka o możliwości konstrukcji zbioru liczb naturalnych. Liczby całkowite (np. konstrukcja ilorazowa nad zbiorem liczb naturalnych) i wymierne (konstrukcja ilorazowa nad zbiorem liczb całkowitych); wzmianka o definicjach działań i porządku. Liczby rzeczywiste: konstrukcja przez przekroje Dedekinda lub ciągi Cauchy’ego nad zbiorem liczb wymiernych; działania i

porządek.

Literatura:

1. W. Guzicki, P. Zakrzewski, Wykłady ze wstępu do matematyki. Wprowadzenie do teorii mnogości, PWN, Warszawa 2005.

2. W. Guzicki, P. Zakrzewski, Zbiór zadań ze wstępu do matematyki, PWN, Warszawa 2005.

3. J. Kraszewski, Wstęp do matematyki, WNT, Warszawa 2015.

4. K. Kuratowski, Wstęp do teorii mnogości i topologii, PWN, Warszawa 2004.

5. H. Rasiowa, Wstęp do matematyki, PWN, Warszawa 2004.

Efekty uczenia się:

1. Potrafi używać zapisu symbolicznego (spójniki logiczne, kwantyfikatory).

2. Umie operować konstrukcjami na zbiorach (suma, iloczyn, iloczyn kartezjański, zbiór potęgowy, indeksowane rodziny zbiorów).

3. Rozpoznaje podstawowe własności funkcji, znajduje obraz/przeciwobraz zbioru dla danej funkcji.

4. Potrafi badać równoliczność zbiorów, rozpoznaje zbiory przeliczalne i nieprzeliczalne, zna własności zbiorów przeliczalnych i zbiorów mocy continuum.

5. Rozpoznaje relacje równoważności, wyznacza klasy abstrakcji.

6. Rozpoznaje relacje częściowego, liniowego i dobrego porządku, wskazuje elementy wyróżnione.

7. Potrafi ustalić istnienie lub nieistnienie izomorfizmu zbiorów uporządkowanych.

8. Zna lemat Kuratowskiego-Zorna i niektóre jego zastosowania.

Zajęcia w cyklu "Semestr zimowy 2020/21" (w trakcie)

Okres: 2020-10-01 - 2021-01-31
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Michał Korch, Paweł Traczyk
Prowadzący grup: Joanna Jaszuńska, Leszek Kołodziejczyk, Michał Korch, Mikołaj Krupski, Konrad Pióro, Paweł Traczyk, Piotr Zakrzewski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin
Uwagi:

Informacje o zasadach zaliczania w tym roku można znaleźć w szczegółowym opisie wykładu.

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.