University of Warsaw - Central Authentication System
Strona główna

Mathematical analysis I.2

General data

Course ID: 1000-112bAM2a
Erasmus code / ISCED: 11.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Mathematics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Mathematical analysis I.2
Name in Polish: Analiza matematyczna I.2 (potok I)
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: Obligatory courses for 1st grade JSEM
Obligatory courses for 1st grade JSIM
Obligatory courses for 1st grade Mathematics
ECTS credit allocation (and other scores): 10.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Main fields of studies for MISMaP:

mathematics
physics

Type of course:

obligatory courses

Prerequisites (description):

(in Polish) Oczekuje się dobrej znajomości zagadnień ujętych w sylabusie przedmiotu Analiza matematyczna I.1.

Short description:

The course is a continuation of Analiza matematyczna I.1. It covers the differential and integral calculus of one variable, starting from the notion of a derivative and its applications (de l'Hospital's rule, Taylor polynomials), through sequences and series of functions and their convergence (Weierstrass' test for absolute convergence, Arzela-Ascoli theorem), properties of power series, to the theory of the Riemann integral, improper integrals and their applications (length of C1 curves, Euler's Γ function, Wallis' formula).

Full description:

  1. Algebraic properties of differentiation (derivative of sum, difference, product and ratio of two functions), chain rule and the derivative of the inverse function. Mean value theorems of Rolle, Lagrange and Cauchy. Criteria for monotonicity of differentiable functions. De l'Hospital's rule. Local extrema. Second- and higher order derivatives, Taylor's formula with remainder in the forms of Peano, Lagrange and Cauchy. Taylor polynomials of exponential and logarythmic functions, of sin, cos, arc sin and arc tan functions. Inflection points. Sufficient conditions for the existence of an extremum and an inflection point. Ck functions.
  2. Sequences and series of functions, their pointwise and uniform convergence. Uniform Cauchy's condition, Weierstrass' test for uniform convergence. Continuity of a limit of a uniformly convergent sequence of continuous function. Weierstrass' theorem on approximation of continuous functions by polynomials (e.g., through Bernstein polynomials). Arzela-Ascoli theorem. Example of a continuous, nowhere differentiable function.
  3. Power series, its radius of convergence (Cauchy-Hadamard's formula). Uniform and absolute convergence of a power series. Continuity of the sum of a power series, Abel's theorem. Power series expansions of elementary functions.
Bibliography:

1. A. Birkholc, Analiza matematyczna dla nauczycieli. PWN, Warszawa 1977.

2. B. P. Demidowicz, Zbiór zadań z analizy matematycznej, Naukowa Książka, Lublin 1992 (t. I) i 1993 (t. II i III).

Baranenkov, G. S.; Demidovich, B.; Efimenko, V. A.; Kogan, S. M.; Lunts, G.; Porshneva, E.; Sycheva, E.; Frolov, S. V.; Shostak, R.; Yanpolsky, A., Problems in mathematical analysis. (Under the editorship of B. Demidovich). Mir Publishers, Moscow, 1976.

3. G. M. Fichtenholz, Rachunek różniczkowy i całkowy. Tom 1-2, PWN, Warszawa 2007.

4. W. Kaczor, M. Nowak, Zadania z Analizy Matematycznej 1. Liczby rzeczywiste, ciągi i szeregi liczbowe, PWN, Warszawa 2005.

W. Kaczor, M. Nowak, Problems in Mathematical Analysis |I, AMS Student Mathematical Library (Book 12), 2001.

5. K. Kuratowski, Rachunek różniczkowy i całkowy, PWN, Warszawa 1979.

K. Kuratowski, Introduction to calculus. International Series of Monographs in Pure and Applied Mathematics, Vol. 17. Pergamon Press, Oxford-Edinburgh-New York; PWN—Polish Scientific Publishers, Warsaw, 1969

6. W. Pusz, A. Strasburger, Zbiór zadań z analizy matematycznej Wydział Fizyki UW, Warszawa 1982.

7. W. Rudin, Podstawy analizy matematycznej, PWN, Warszawa 2000.

W. Rudin, Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.

8. P. Strzelecki, Analiza Matematyczna I (lecture notes in Polish),

http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i.pdf

Addition to the lecture notes (auth. M. Jóźwikowski, S. Kolasiński),

http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i-zadania.pdf

Learning outcomes:

Student:

1. Can justify the correctness of his reasoning. He operates with examples.

2. Knows methods of calculating derivatives and the most important theorems of differential calculus of functions of one real variable, including Lagrange's theorem on mean value, Taylor formula and de l'Hospital rule. Uses typical tools of differential calculus of functions of one variable, incl. determines local extremes, intervals of monotonicity and convexity as well as limits of real variable functions, and also solves optimization tasks based on the study of extremes. Uses the Taylor formula to calculate limits.

3. Knows the concept of point and uniform convergence of a sequence and a functional series, Weierstrass's criterion of uniform convergence, theorem on the continuity of the limit of a uniformly convergent sequence / series of continuous functions and the theorem on differentiation of functional sequences. He can investigate uniform convergence of functional sequences and prove the continuity or differentiability of the limits of such sequences.

4. Knows the concept of a power series and the most important functional properties of the sum of such a series. He knows the Cauchy-Hadamard formula. Specifies the radius of convergence of the power series; is able to use the theorem on the differentiability of functional series to sum up specific series.

5. knows the concept of a primary function and an indefinite integral; can integrate by parts and by substitution.

6. Knows the concept of definite integral, the definition of the Riemann integral and its geometric interpretation. He knows the relationship between the definite and indefinite integral. Uses the tools of integral calculus in tasks of a geometrical nature. Calculates the area under the graph and the curve length.

7. Knows the concept of indefinite integral and examples of functions defined by such integrals. Using various methods, he/she studies the convergence of indefinite integrals.

Assessment methods and assessment criteria:

Final mark based on the sum of points from exercises, the two tests and exam.

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-19 - 2024-06-16
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 60 hours more information
Lecture, 60 hours more information
Coordinators: Marek Bodnar
Group instructors: Marek Bodnar, Michał Jóźwikowski, Agnieszka Kałamajska, Michał Kotowski, Michał Miśkiewicz, Piotr Mormul, Mikołaj Rotkiewicz, Marta Strzelecka, Marta Szumańska
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination

Classes in period "Summer semester 2024/25" (future)

Time span: 2025-02-17 - 2025-06-08
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 60 hours more information
Lecture, 60 hours more information
Coordinators: Marta Szumańska
Group instructors: Tomasz Cieśla, Galina Filipuk, Krystian Kazaniecki, Leszek Kołodziejczyk, Piotr Mormul, Marta Szumańska, Anna Zatorska-Goldstein, Henryk Żołądek
Students list: (inaccessible to you)
Examination: Course - Examination
Lecture - Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)