University of Warsaw - Central Authentication System
Strona główna

Quantum Information

General data

Course ID: 1000-2M22IKW
Erasmus code / ISCED: 11.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0612) Database and network design and administration The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Quantum Information
Name in Polish: Informacja kwantowa
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: (in Polish) Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka
Elective courses for Computer Science
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: English
Main fields of studies for MISMaP:

computer science
physics

Type of course:

elective monographs

Requirements:

Information theory 1000-2N03TI

Prerequisites:

Tools Supporting Data Analysis in Python 1000-1M20NPD

Short description:

This is an introductory course on modern quantum information processing and its key applications to quantum technologies. It is designed for students who are majoring at computer science and mathematics. It assumes the basic knowledge of classical Shannon information theory, geometry and linear algerbra, as well as mathematical analysis. The students will be first acquainted with the basic concepts related to quantum physics (definitions, theorems and computational framework) that define the unusual properties of quantum information. Then we will focus our attention on their use in quantum communications and quantum cryptography. The second half of the lecture will be devoted to quantum computations; we will discuss several computation models pondered and the basic classes of quantum algorithms.

Lectures will be accompanied by problem sessions that will offer exercises as well as programming practice on simulators of quantum machines.

Full description:

Part I: Quantum Information

1. Quantum states, measurements and evolution

2. Quantum channels

3. Quantum entanglement

4. Quantum information theory

5. Bell theorem and quantum randomness

Part II: Quantum Communications

1. No-cloning theorem

2. Quantum Cryptography

3. Device-Independent Quantum Key Distribution

4. Quantum Dense Coding & Quantum Teleportation

5. Post-Quantum and Hybrid Cryptography

Part III: Quantum Computations

1. Classical computation models with quantum gates (continuous-variable and discrete-variable computer)

2. Quantum computational models (quantum annealers, adiabatic quantum computation); Implementations: KLM protocol, NISQ quantum computer machines, hardware platforms available

Bibliography:

1. M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information (CUP, 2000)

2. G. Alber, A. Zeilinger et al., Quantum information (Springer, 2001)

3. M. Le Bellac, A short introduction to quantum information and quantum computation (CUP, 2006)

4. G. van Assche, Quantum Cryptography and Secret-Key Distillation (CUP, 2006)

Learning outcomes: (in Polish)

Wiedza: absolwent zna i rozumie:

- K_W01 – wiedzę z zakresu matematyki wykorzystywanej w opisie systemów kwantowych,

- K_W02 – znaczenie pojęć, definicji i twierdzeń mechaniki kwantowej dla realizacji kwantowych obliczeń i komunikacji

Umiejętności: absolwent potrafi:

- K_U02 - wyrażać problemy obliczeniowe w postaci algorytmów kwantowych

- K_U05 - identyfikować przynależność i trudność wybranych problemów obliczeniowych, które mogą być rozwiązywane za pomocą komputerów kwantowych

- K_U06 - posługiwać się nowoczesnymi technologiami obliczeń kwantowych

Assessment methods and assessment criteria:

The final score will consist of the outcomes of the systematic work during the semester, the scores from the test and the scores from the written exam.

Additionally, in the case of doctoral students, a written essay describing the topic agreed with the teacher, e.g. quantum algorithm or protocol, will be expected. It should take into account scientific literature (publications) from the last 5 years.

Classes in period "Winter semester 2023/24" (past)

Time span: 2023-10-01 - 2024-01-28
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Magdalena Stobińska
Group instructors: Morteza Moradi, Emad Rezaei Fard Boosari, Magdalena Stobińska
Students list: (inaccessible to you)
Examination: Examination

Classes in period "Winter semester 2024/25" (future)

Time span: 2024-10-01 - 2025-01-26
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Magdalena Stobińska
Group instructors: Morteza Moradi, Magdalena Stobińska, Radosław Zagajewski
Students list: (inaccessible to you)
Examination: Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)