Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Multitemporal analysis on remote sensing data

Informacje ogólne

Kod przedmiotu: 1900-3-MAR-GKT-WA
Kod Erasmus / ISCED: 07.6 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (brak danych)
Nazwa przedmiotu: Multitemporal analysis on remote sensing data
Jednostka: Wydział Geografii i Studiów Regionalnych
Grupy: Przedmioty do wyboru, dzienne studia II st. (Geoinformatyka, kartografia, teledetekcja) - s. zimowy
Punkty ECTS i inne: 6.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Rodzaj przedmiotu:

fakultatywne

Założenia (opisowo):

- The B2 level English (spoken and written)

- knowledge of remote sensing basis

- knowledge of basic programming (R and JavaScript in Google Earth Engine)

- Google account with free space on Google Drive, Earth Engine account


Tryb prowadzenia:

mieszany: w sali i zdalnie

Skrócony opis:

The aim of this course is to prepare students for conducting analysis on satellite time series data. The course is a part of ERASMUS+ Strategic partnership E-TRAINEE (E-learning course on Time Series Analysis in Remote Sensing for Understanding Human-Environment Interactions, https://web.natur.cuni.cz/gis/etrainee/) project developed to provide theoretical and practical knowledge on methods used for information extraction from time series of remote sensing data.

Part used in the classes is oriented on the use of satellite multispectral images time series analysis and demonstrates the whole processing chain from the data acquisition, pre-processing multitemporal data, via classification or change detection methods to validation and accuracy assesment of final products.

Students will plan the data processing workflow and their own analysis.

Pełny opis:

The aim of this course is to prepare students for planning, data selecting, processing and analysing time series data from satellites. This topic is related to Module 2 of the E-TRAINEE course (E-learning course on Time Series Analysis in Remote Sensing for Understanding Human-Environment Interactions, https://web.natur.cuni.cz/gis/etrainee/), developed by four partner universities within ERASMUS+ Strategic partnership programme. Some parts of the Theme 1 from Module 1 will also be used, which is oriented towards the basis of time series theory and methods of its analysis in remote sensing.

The course will cover such Themes as fundamentals of time series, satellite multispectral data principles, temporal information in satellite data, pre-processing of time series data, multitemporal classification, vegetation changes/disturbances monitoring and validation of obtained results.

Students will use QGIS, RStudio and Google Earth Engine platform to perform their analysis.

The course will be realized as a series of lectures and exercises which the students will learn on their own based on material from the e-learning platform, and then presentations of their own projects are planned. Students can choose the form of final presentation (oral presentation or simple scientific article preparation).

The course accentuates the development of students' English language skills and familiarizes them with English remote sensing terminology.

Literatura:

The literature for each Theme is included in the appropriate Module of the course.

Example publications:

Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach. CRC press. https://doi.org/10.1201/9780429506482

Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

Kuenzer, C., Dech, S., & Wagner, W. (2015). Remote sensing time series. Remote Sensing and Digital Image Processing, 22, 225-245. https://link.springer.com/book/10.1007/978-3-319-15967-6

Mayr, S., Kuenzer, C., Gessner, U., Klein, I., & Rutzinger, M. (2019). Validation of earth observation time-series: A review for large-area and temporally dense land surface products. Remote Sensing, 11(22), 2616. https://doi.org/10.3390/rs11222616

Efekty uczenia się:

After completing the course students:

KNOWLEDGE (K_W01; K_W04; K_W07; W_14):

- know the basic issues of the multitemporal analysis on satellite remote sensing data,

SKILLS (K_U01; K_U07):

- use terminology oriented on multitemporal analysis on remote sensing data in English in the presentation of the results,

ATTITUDES (K_K01):

- improve their professional skills;

- understand the need to search for new technologies;

- care about the reliability of their research work.

Metody i kryteria oceniania:

The final grade for the course consists of half of the theoretical part (lectures) and half of the practical part (exercises).

The grade on exercises part (50% of all) depends on:

finished exercises related to the Themes (50% of the exercises part),

own project development (can be done in pairs) and presentation of the results (50% of the exercises part, possibility of choosing the presentation method: oral presentation or in the form of a simple scientific article - example scientific writing guideline: https://writingajournalarticle.wordpress.com/).

Attendance is counted as completion of the exercise. All exercises must be done.

The grade on the lectures part (50% of all) is based on the final test. However, after each completed Theme, students will receive a few questions related to this and the answers sent to the lecturers will be scored. Obtaining a certain number of points can replace the final test.

The student has the right to improve their negative grade.

Praktyki zawodowe:

Brak.

Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)

Okres: 2023-10-01 - 2024-01-28
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 45 godzin więcej informacji
Wykład, 15 godzin więcej informacji
Koordynatorzy: Adriana Marcinkowska-Ochtyra
Prowadzący grup: Adriana Marcinkowska-Ochtyra, Adrian Ochtyra
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Wykład - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
kontakt deklaracja dostępności USOSweb 7.0.1.0-2 (2024-02-19)