Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Przedmioty obieralne dla Machine Learning (grupa przedmiotów zdefiniowana przez Wydział Matematyki, Informatyki i Mechaniki)

Jednostka: Wydział Matematyki, Informatyki i Mechaniki Zestaw przedmiotów, który widzisz poniżej został zdefiniowany przez tę jednostkę. Jednostka ta nie musi mieć jednak związku z organizacją wymienionych przedmiotów (jednostką odpowiedzialną za organizację przedmiotu jest jednostka wymieniona w odpowiedniej kolumnie w tabeli poniżej). Więcej o tym przeczytasz w Pomocy.
Grupa przedmiotów: Przedmioty obieralne dla Machine Learning
wybierz inną grupę

Plany zajęć grupy przedmiotów:

Plan przecięty w wybranym przedziale dat
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Legenda
Jeśli przedmiot jest prowadzony w danym cyklu dydaktycznym, to w odpowiedniej komórce pojawi się koszyk rejestracyjny. Ikona koszyka zależy od tego, czy możesz się rejestrować na dany przedmiot.
niedostępny (zaloguj się!) - nie jesteś zalogowany
niedostępny - aktualnie nie możesz się rejestrować
zarejestruj - możesz się zarejestrować
wyrejestruj - możesz się wyrejestrować (lub wycofać prośbę)
prośba - złożyłeś prośbę o zarejestrowanie (i nie możesz jej już wycofać)
zarejestrowany - jesteś pomyślnie zarejestrowany (i nie możesz się wyrejestrować)
Kliknij na ikonę "i" przy koszyku, aby uzyskać dodatkowe informacje.

2022Z - Semestr zimowy 2022/23
2022L - Semestr letni 2022/23
2023Z - Semestr zimowy 2023/24
2023L - Semestr letni 2023/24
(zajęcia mogą być semestralne, trymestralne lub roczne)
Opcje
2022Z 2022L 2023Z 2023L
1000-2M12AGO brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest zapoznanie studenta wybranymi z modelami, algorytmami i narzędziami stosowanymi w genomice porównawczej ze szczególnym uwzględnieniem drzew i ich zastosowaniem w różnych kontekstach.

Planowane ćwiczenia będą częściowo formie laboratorium komputerowego.

Strona przedmiotu
1000-2M19TCH
Chmura w uczeniu maszynowym (od 2023-10-01)
brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Program obejmuje dwa obszary zastosowań informatyki będące obecnie w kręgu głównych zainteresowań biznesu z uwagi na oferowane lub spodziewane źródła przewagi konkurencyjnej: chmurę obliczeniową i uczenie maszynowe. Ujęcie zagadnień z zachowaniem podejścia, w którym środowiska chmurowe (głównie typu IaaS i PaaS) są przede wszystkim kontekstem wykonawczym pozwoli skupić się słuchaczom na rozwiązywaniu konkretnych problemów manifestując tym samym podejście pragmatyczne. Całości towarzyszy wspólna praca wraz z partnerem biznesowym nad projektem integrującym tematy z zakresu programu przedmiotu, którego wykonanie jest wymaganym elementem uzyskania oceny. Wybór konkretnych zagadnień wykładu zależy od scenariuszy przedstawionych przez partnera biznesowego, lecz będzie obejmować co najmniej modelowanie matematyczne, szeregi czasowe i techniki przetwarzania języka naturalnego (NLP).

Strona przedmiotu
1000-2M23DE
Data engineering (od 2023-10-01)
brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-2M03DM
Data mining (od 2023-10-01)
brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedstawienie głównych zagadnień w dziedzinie eksploracji danych (data mining) i metod ich rozwiązywania; omówienia podstawowych algorytmów i ich efektywnych realizacji na dużych zbiorach danych dla trudnych problemów takich, jak reguły asocjacyjne, redukty, dyskretyzacja atrybutów ciągłych, wzorce czasowe, drzewo decyzyjne; przedstawienie nowoczesnych technik obliczeń takich, jak równoległe przetwarzania, obliczenia ewolucyjne, heurystyki za pomocą standardowych baz danych lub logicznie zbudowanych struktur danych.

Strona przedmiotu
1000-2M13DZD brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot ugruntowuje teoretyczną i praktyczną wiedzę z zakresu metod uczenia maszynowego i eksploracji danych, pod kątem zastosowań związanych z dużymi, heterogenicznymi, rozproszonymi i dynamicznie przyrastającymi źródłami danych. Omawiana jest problematyka zapewnienia wystarczającej wiarygodności i jakości danych celem uczenia skutecznych modeli klasyfikacji, predykcji itd., jak i utrzymania skuteczności takich modeli jako składowych większych systemów informatycznych. Odwołujemy się do szerokiego zakresu praktycznych form i źródeł danych, w szczególności danych generowanych maszynowo. Omawiamy szeroki zakres praktycznych celów stawianych metodom uczenia maszynowego i eksploracji danych, jak np. wykrywanie anomalii lub podobnych przypadków. Dyskutujemy na praktycznych przykładach pełen cykl życia danych i informacji w systemach przetwarzania i analizy danych, z uwzględnieniem odpowiednio w nie wkomponowanych rozwiązań bazujących na uczeniu maszynowym i eksploracji danych.

Strona przedmiotu
1000-2M21IUM brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

W czasie zajęć przedstawione zostaną techniki interaktywnej eksploracji danych i konstruowania modeli uczenia maszynowego. W szczególności, omówione zostaną techniki aktywnego uczenia oraz wizualnej eksploracji danych.

Strona przedmiotu
1000-2M22OW
Optymalizacja wypukła (od 2023-10-01)
brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

This is an introduction to convex optimization, giving an overview of the landscape of convex optimization problems, and covering the most important convex optimization algorithms and lower bounds, as well as convex modelling techniques. The lab sessions cover common approaches to solving convex problems in practice.

Strona przedmiotu
1000-3M22OW brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

This is an introduction to convex optimization, giving an overview of the landscape of convex optimization problems, and covering the most important convex optimization algorithms and lower bounds, as well as convex modelling techniques. The lab sessions cover common approaches to solving convex problems in practice.

Strona przedmiotu
1000-2M21PRS brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot porusza tematykę problemów i zagadnień występujących przy realizacji systemów rozproszonych o bardzo dużej skali i jest oparty na doświadczeniach z rzeczywistej implementacji takiego systemu. Omówimy praktyczne aspekty budowy systemów o wysokiej przepustowości, procesujących petabajty danych dziennie w rozproszonych geograficznie centrach danych. Poruszymy typowe problemy oraz rozważymy decyzje związane z utrzymaniem i rozwojem takich systemów. Przyjrzymy się technikom efektywnej wymiany danych pomiędzy komponentami systemu, zagadnieniom związanym z przechowywaniem oraz procesowaniem dużej ilości danych. Zajmiemy się także praktycznymi aspektami organizacji infrastruktury wspomagającej uczenie maszynowe w realiach systemów o dużej skali.

Strona przedmiotu
1000-2M12TGK
Teoria gier koalicyjnych (od 2023-10-01)
brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Gry koalicyjne stanowią duży, aktywnie rozwijany dział teorii gier. Są one dobrym modelem w każdej sytuacji, w której występuje synergia między graczami - zamiast grać osobno, mogą oni łączyć się w większe grupy w celu osiągnięcia korzystniejszego wyniku. Dlatego też znajdują one zastosowanie w dziedzinach tak różnych jak ekonomia, informatyka (systemy wieloagentowe), medycyna czy nauki polityczne.

Strona przedmiotu
1000-2M14TGS brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Jeśli interesuje Państwa poznanie metod modelowania i analizy sieci społecznych, w tym serwisów społecznościowych takich jak Facebook, zapraszam na zajęcia.

Metody analizy sieci społecznych to zbiór teorii, technik i narzędzi służących do badania złożonych współzależności w grupie (społeczeństwie, społeczności, w firmie, w stadzie, itp.)

Istotą analizy sieciowej jest próba zrozumienia zachowania zbiorowości jako całości poprzez analizę siędzi powiązań pomiędzy jednostkami zbiorowości. Dziedzina ta leży na styku wielu dyscyplin (matematyki, sociologi, antropologi, statystyki, ekonomii, itp.), tym nie mniej to właśnie teoria gier oferuję najciekawsze narzędzia do analizy sieci społecznych i to przy jej użyciu osiąga się najważniejsze obecnie wyniki.

Strona przedmiotu
1000-2M22TFG brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 15 godzin
Grupy przedmiotu

Skrócony opis

Kurs obejmie metody bioinformatyczne, które są kluczowymi składnikami wszystkich interdyscyplinarnych projektów, które mają na celu opisanie i zrozumienie złożonych systemów biologii molekularnej. Skupimy się na analizie danych z genomiki funkcjonalnej, w tym transkryptomiki, proteomiki, metabolomiki i epigenomiki.

Strona przedmiotu
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.1.0-4 (2023-02-27)