University of Warsaw - Central Authentication System
Strona główna

(in Polish) Procesy Levy'ego i procesy stabilne

General data

Course ID: 1000-1M13PLS
Erasmus code / ISCED: (unknown) / (unknown)
Course title: (unknown)
Name in Polish: Procesy Levy'ego i procesy stabilne
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: (in Polish) Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka
Elective courses for 2nd stage studies in Mathematics
ECTS credit allocation (and other scores): (not available) Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: (unknown)
Type of course:

elective monographs

Prerequisites (description):

It is assumed that the students are familiar with the subjects covered by the courses: Probability Theory I and II (or equivalent). Moreover, basic knowledge of the general theory of stochastic processes is also necessary (construction of a stochastic process, Brownian motion, Poisson process, and their properties, properties of sample paths, notions of a filtration, stopping time, etc.)


Short description:

The course will cover selected topics on two important (not disjoint) classes of processes: Levy processes, i.e. processes with stationary independent increments, and stable processes. Properties and various representations of these processes, as well as limit theorems will be discussed.

Full description:

We plan to cover the following topics:

Poisson random measure, its construction and properties, integration.

Infinitely divisible laws. Levy-Khintchine theorem. Theorem on convergence to an infinitely divisible law.

Levy processes (processes with stationary independent increments). Levy-Ito decomposition - representation of a Levy process with help of a Poisson random measure and an independent Brownian motion. Properties (e.g. properties of sample paths, moments, recurrence and transience, asymptotic behaviour for small times). Subordination. Wiener-Hopf factorization. Levy processes without positive jumps. First passage times as subordinators. Examples of limit theorems in which the limits are Levy processes.

Stable processes. The general form of stable laws on a real line. Series representation of stable random variables. Multidimensional stable laws. Characteristic function and spectral measure. Measuring dependence - covariation and codifference. Independently scattered stable random measure and stable processes which have a representation as an integral with respect to this random measure. Examples (fractional stable processes, stable Ornstein Uhlenbeck process). Limit theorems.

Self-similar stable processes. Special case - Gaussian processes: fractional Brownian motion and other processes of "fractional type". Properties and representations. Fractional Brownian motion as a limit of functionals related to alpha-stable Levy processes.

We reserve the right to modify this program, depending on the students preferences.

Bibliography:

Applebaum, D.:Levy processes and stochastic calculus

Bertoin, J. Levy processes

Kallenberg, O.: Foundations of modern probability, Springer, 2001.

Kyprianou. A.E.: Introductory lectures on Fluctuations of Levy processes, Springer, 2006.

Sato, K-I.: Levy processes and infinitely divisible distributions,

Cambridge University Press, 2005.

Samorodnitsky G., Taqqu: Stable non-Gaussian random processes, Chapman & Hall/CRC, 2000.

Learning outcomes: (in Polish)

Student

1. Potrafi skonstruować miarę losową Poissona o zadanej mierze intensywności.

2. Zna pojęcie rozkładu nieskończenie podzielnego oraz postać jego funkcji charakterystycznej.

3. Zna twierdzenie i potrafi udowodnić w konkretnych przypadkach zbieżność do rozkładu nieskończenie podzielnego.

4. Zna pojęcie procesu Levy'ego. Potrafi podać jego opis oraz

konstrukcję przy zadanej charakterystyce.

5. Potrafi odczytać własności procesu Levy'ego z jego miary Levy'ego oraz współczynników dryfu i dyfuzji.

6. Zna definicje rozkładu stabilnego i procesu stabilnego i role parametrów rozkładu.

7. Zna pojęcie całki względem miary losowej stabilnej, potrafi wyznaczyć parametry zmiennych losowych/procesów stabilnych takiej postaci.

8. Zna metody mierzenia zależności zmiennych losowych stabilnych.

9. Potrafi podać przykłady modeli, w których jako granice pojawiają się procesy Levy'ego oraz procesy stabilne.

Assessment methods and assessment criteria: (in Polish)

Egzamin. Uwzględniana będzie także aktywność na ćwiczeniach.

This course is not currently offered.
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)