University of Warsaw - Central Authentication System
Strona główna

Optical Properties of Semiconductors

General data

Course ID: 1101-5FS12
Erasmus code / ISCED: 13.205 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (unknown)
Course title: Optical Properties of Semiconductors
Name in Polish: Optyczne własności półprzewodników
Organizational unit: Faculty of Physics
Course groups: (in Polish) Przedmioty do wyboru dla doktorantów;
(in Polish) Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka
Physics (2nd level); elective courses
Physics, 2nd level; Physics of Condensed Matter and Semiconductor Devices
ECTS credit allocation (and other scores): 3.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Mode:

Classroom

Short description:

The subject of the course are properties of solids with a strong emphasis on semiconductors and low-dimensional semiconductor structures. Theoretical description of the way how light interacts with semiconductors is presented. Different optical methods used nowadays in semiconductor physics are reviewed.

Full description:

The aim of the course is to provide the knowledge about fundamentals of classical and quantum-mechanical description of optical processes in semiconductors and low-dimensional semiconductor structures related to the band structure, presence of free carriers (electrons and holes), impurities and lattice vibrations. The most important optical methods used nowadays in semiconductor physics including light absorption, reflectivity, luminescence, photoconductivity and inelastic light scattering (Raman effect) are presented. They are successfully used to study experimentally classical three-dimensional systems, nanoobjects like quantum wells, quantum dots as well as metamaterials. These methods are commonly used not only in physics but also in other natural sciences like chemistry or biology.

Program:

1. Maxwell's equations in description of wave propagation in solids.

2. Dynamic Dielectric Function formalism.

3. Quantum-mechanical description of optical processes. Oscillator strength concept.

4. Optical processes induced by the presence of free carriers.

5. Lattice vibrations (phonons). Electron-phonon interaction.

6. Hydrogen atom model in solid state physics.

7. Optical spectroscopy of shallow and deep impurities.

8. Interband transitions. Van Hoove singularities. Fundamental band-edge.

9. Optical processes involving excitons, polaritons. Magneto-optics and application of external hydrostatic pressure and uniaxial stress.

10. Optical properties of semiconductor nanoobjects (quantum wells, heterojunctions, quantum dots, quantum wires) and metamaterials.

Prerequisites:

Quantum mechanics I

Bibliography:

Basic bibliography

1. Mark Fox, Optical Properties of Solids

2. Ch. Kittel, Introduction to Solid State Physics.

Complementary bibliography

3. P. Yu, M. Cardona, Fundamentals of Semiconductors.

4. J.M. Ziman, Principles of the Theory of Solids.

5. K. Sierański, M. Kubisa, J. Szatkowski, J. Misiewicz, Półprzewodniki i struktury półprzewodnikowe.

6. N.W. Ashcroft, N.D. Mermin, Solid State Physics

Learning outcomes:

Knowledge

1. knows basic topics of wave propagation in solids

2. knows basic properties of metals, semiconductors and isolators

3. knows basic optical methods suitable for studies of condensed matter

4. knows major classical and quantum methods of description of optical properties of condensed matter

5. knows basic categories of elementary excitations in semiconductors

Assessment methods and assessment criteria:

Final evaluation

1. Evaluation of an essay or presentation on a topic related to contemporary optical studies of condensed matter (30% of the final grade).

2. Assessment from the oral exam (70% of the final grade).

3. Attendance at the lecture is not obligatory but highly recommended. In particular deriving theoretical relations, equations and dependencies as well as experimental details will be provided as an extension of the materials available on the lecture website.

Classes in period "Winter semester 2023/24" (past)

Time span: 2023-10-01 - 2024-01-28
Selected timetable range:
Navigate to timetable
Type of class:
Lecture, 30 hours more information
Coordinators: Andrzej Wysmołek
Group instructors: (unknown)
Students list: (inaccessible to you)
Examination: Examination

Classes in period "Winter semester 2024/25" (future)

Time span: 2024-10-01 - 2025-01-26
Selected timetable range:
Navigate to timetable
Type of class:
Lecture, 30 hours more information
Coordinators: Andrzej Wysmołek
Group instructors: (unknown)
Students list: (inaccessible to you)
Examination: Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
Krakowskie Przedmieście 26/28
00-927 Warszawa
tel: +48 22 55 20 000 https://uw.edu.pl/
contact accessibility statement USOSweb 7.0.3.0 (2024-03-22)